
The last Tclsh Spot article introduced Tcl's http package, and showed how to use that package to retrieve an html page and display it using the htmllib.tcl package.

While we can retrieve and display HTML from PINE or ELM using the htmlview.tcl program, cruising the web is a task that's really better done with a dedicated browser.
Surfing the web is an interactive process, and an application that's truly designed to be interactive rather than a static html viewing program will be more satisfying to
use.

However, there are some web oriented tasks that I prefer to not do interactively. For instance, getting the current quote on several stocks by going to a website typing in
each ID one at a time, clicking the button and waiting for it to load is about as amusing as watching rdist run.

This is a great job for a custom software robot that will parse the HTML page for information content, rather than for display instructions.

This article will describe a stock-quote retrieving robot, and introduce the Tcl regular expression commands to parse the page. (In fact, there are more generic ways to
parse an HTML page, but regular expressions are just fine for simple dedicated robots.)

As you recall from last article, using the http package to retrieve a web page is pretty simple. We need to use the package require command to tell Tcl we'll be using the
http package, and then use the :http::geturl command to retrieve a page.

Here's the code for retrieving a page with a quote for Sun Microsystems from the NewsAlert homepage.

set url "http://www.newsalert.com/free/stocknews?Symbol=sunw"

package require http

set id [::http::geturl $url]
set data [::http::data $id]

The good news is that getting the page is easy. The bad news is that the current price of Sun stock is 4 bytes out of 21K of data. Finding the two items of information
(The stock symbol and the last price) in 21K of data is the fun part.

The interesting part of the page we retrieved from NewsAlert looks like this:

<td colspan="10"><table border="0" cellpadding="0" cellspacing="0" width="100%"><tr><td bgcolor="#6699CC"></td></tr></table></td>
</tr><tr >
<td align="center"></TD>
<td align="left" class="symprice">SUNW</td>
<td align="left" class="symprice">89 5/8</td>
<td align="left" class="indexNumD"><img src="/gifs/downarrow2.gif"
width="9" height="8" alt="" border="0">-3 3/4</td>
<td align="left" class="symprice">-4.0</td>
<td align="left" class="symprice">16:01</td>
<td align="left" class="symprice">94</td>
<td align="left" class="symprice">94</td>
<td align="left" class="symprice">88 15/16</td>
<td align="left" class="symprice">10,044</td>
</tr></table><table cellpadding="0" cellspacing="0" border="0" width="100%">
<tr>

If you're familiar with parsing strings in C using strtok, strchr, strncpy etc., it may seem obvious to parse the data using the Tcl string commands to find tokens and extract
substrings from a larger string.

The Tcl string commands (;login: Vol 24, Num 3, June, 1999, P67) can be used to extract the information we want from a web page. However, while parsing HTML pages
using string first, string last and string range commands is conceptually easy, the code tends to be rather long, and ends up with page specific strings to mark the start
and end of interesting areas.

If we look at the page as a set of patterns, and extract the information based on the patterns in the HTML page, rather than individual match strings, we can make the
extraction code more generic and robust.

Thinking in terms of patterns leads me to think of using regular expressions to describe the HTML page.

Tcl has supported basic regular expressions operating on standard ASCII text for many years. When Tcl version 8.1 was developed, the regular expression support was
completely rewritten to support Unicode and more regular expression options. The regular expression support is based on Henry Spencer's implementation, which
follows the POSIX 1003.2 specification and includes many of the Perl 5 extensions.

Tcl regular expressions come in three forms:

BRE: POSIX Basic Regular Expressions
ERE: POSIX Extended Regular Expressions
ARE: Advanced Regular Expressions, generally a superset of EREs, with a few incompatibilities

This description of Regular Expressions is taken from Christopher Nelson's book Tcl/Tk Programmer's Reference, published by Osborne/McGraw-Hill. You should be able to
order it by the time this issue of ;login: is available. (See www.purl.org/net/TclTkProgRef for more information.)

Tcl interprets regular expressions as AREs by default. BRE and ERE interpretation may be selected with embedded options.

Regular Expression Syntax

A regular expression (RE) is made up of atoms that match characters in a string, and constraints that limit where those matches occur. The simplest atom is a
single character to be matched literally. For example, the regular expression "a" consists of one atom that matches the start of "abc" or "apple", the middle of
"bat", or the end of "comma".

Any single character can be matched with "." (dot). For example the RE a.c matches any three-character substring starting with a and ending with c anywhere
within a string.

One of several specific characters can be matched with a class. A class consists of square brackets surrounding a string of characters, collating elements,
equivalence classes, or named character classes to match. Characters, collating elements, equivalence classes, and named classes may be freely mixed in a
class, except that equivalence classes and named character classes may not be used as the end of a range.

If the first character of a class is ^ (caret), the class is negated and matches any character not in the class. For example, [^0-9] matches any nondigit. A caret
after the first character of a class has no special meaning.

Characters may be listed explicitly (for example, [0123456789]) or may be described with an implicit range of characters, by specifying the first and last
character in the range, separated by a dash (for example, [0-9]).

The following paragraph includes the Greek combination "ae" as a single-character symbol.

A Unicode collating element is a character or multi-character string that sorts as a single character, such as "ae" for æ. A collating element is represented by
the multi-character string or the collating element's name surrounded by [. and .] such as [.ae.].

The preceding paragraph includes the special character æ.

Default Title file:///clif/BOOKS/TclshSpot/5/article5.html

1 of 3 09/09/2014 10:06 PM

The following paragraph includes several accented lower case o's. We can lose 3-4 of them if they are hard to typeset.

The following paragraph includes several instances of the greek letter pi.

A Unicode equivalence class is a set of characters that sort to the same position, such as o, ò, ó, ô, õ, ö. An equivalence class is represented by a member of
the class surrounded by [= and =], such as [=o=] for the preceding list of o variants. For example, if p and pi were members of an equivalence class,
[[=p=]], [[=pi=]], and [ppi] all match either character.

Note: Character ranges, collating elements, and equivalence classes are highly locale-dependent, not portable, and not generally useful in regular
expressions. Their support in regexp is a side effect of Tcl's general support of Unicode encoding.

A named character class is specified with a class name between [: and :] and stands for all characters (not all the collating elements) belonging to that class.
A named character class may not be used as the endpoint of a range. The POSIX.1 standard class names are listed in the following table. A locale may define
others.

Name Description

alnum
Alphanumeric characters

alpha
Alphabetic characters

blank
A blank character

cntrl
Control characters (e.g., ASCII characters less than 32 and
127)

digit
Decimal digits

graph
All printable characters except blank

lower
Lowercase alphabetic characters

print
Printable characters

punct
Punctuation

space
White space

upper
Uppercase alphabetic characters

xdigit
Hexadecimal digits

For example, {[[:alpha:]]+[[:digit:]]+} matches "abcd1234".

An atom can be quantified with one of several suffixes:

* Specifies that the atom may match 0 or more times in the string

+ Specifies that the atom must match at least once, but may be repeated more
times

? Specifies that the atom may match zero or one occurrence.

Note: The + and ? quantifiers are not supported by BREs.

Thus, .* matches any string, including an empty string, a+b matches one or more a's followed by a b, and a[bc]?d matches "ad", "abc", and "acd", but not
"abcd".

Starting with Tcl revision 8.1, you can also explicitly specify bounds on how many instances of the atom match:

{m} Specifies that the atom must match exactly m times

{m,} Specifies that the atom must match m or more times

{m,n} Specifies that the atom must match m to n times (inclusive). m must be less than
or equal to n.

m and n may be in the range 0 to 255, inclusive.

Note: In basic regular expressions, the braces ({}) must be preceded by backslashes, like \{m,n\}.

That gives us a short review/overview of how a regular expression can be constructed. The syntax of the Tcl regular expression command looks like this:

Syntax:regexp ?options? expression string ?matchVar? ?subMatchVar?

regexp Returns 1 if expression has a match in string. If matchVar or subMatchVar arguments are present, they will be assigned values based on the matched substrings.
options Options to fine tune the behavior of regexp. May be one of:

-nocase Ignores the case of letters when searching for a match.
-indices Stores the location of a match, instead of the matched characters, in the subMatchVars variable.
-expanded Use the expanded syntax that ignores whitespace and comments, allowing long regular expressions to be formatted and commented
-line Enable newline-sensitive matching. Equivalent to specifying -linestop and -lineanchor options.

Default Title file:///clif/BOOKS/TclshSpot/5/article5.html

2 of 3 09/09/2014 10:06 PM

-linestop Parses a dot (.) atom as all characters except newlines.
-lineanchor Treates the beginning of string (^) and end-of-string ($) marker as beginning of line and end of line markers.
-about Returns a list of information about the regular expression.
-- Marks the end of options. Arguments which follow this will be treated as a regular expressions even if they start with a dash.

expression The regular expression to match with string
string The string to search for the regular expression.
?matchVar? If the regular expression matches the string, the entire matching string will be assigned to this variable.
?subMatchVarN? The string matched by each of the substrings defined within parentheses in the regular expression will be assigned to these variables, in the order that the

parenthesized expressions appear counted from left to right, and outer to inner.

The matchVar and subMatchVar variables make the regexp command very useful for pulling patterns out of strings.

For example, this little bit of line noise will extract the name and current price from the data:

regexp {arts\?Symbol=([^"]+)">([^<]*)} $data fullmatch name value

Note that the regular expression is enclosed in curly braces. Since many of the regular expression symbols also have meaning to the Tcl interpreter, they have to be
distinguished from characters that the interpreter should evaluate. The Tcl interpreter will evaluate all characters in a string delimited with double quotes, but will not
evaluate the characters in a string delimited with curly braces. If you want the Tcl interpreter to evaluate parts of a regular expression, but not others, you can enclose
the string in double quotes, and escape the characters that you don't want evaluated with a backslash.

Examining the atoms from left to right:
arts.Symbol= This is a match to the string arts?Symbol=, which occurs as part of the (more recognizable) string /bin/charts?Symbol=.

The dot in arts.Symbol will match any character. In this case, that character will be the question mark.

Because a question mark has meaning to the regular expression parser. The regular expression arts?Symbol= would not match the string /bin/charts?Symbol= The
regular expression parser would evaluate the question mark as a quantifier (there must be 0 or 1 s atoms) instead of matching a question mark character.

To match a literal question mark, we need to escape the question mark with a backslash. The regular expression: arts\?Symbol= would match the string
/bin/charts?Symbol=,

([^"]+) This subexpression will be used to set the value of the first sub-match variable (name).

The class [^"] will match any character except a double-quote. The plus symbol (+) matches 1 or more characters that are not a double-quote.

This subexpression matches the characters between the equals sign, and the first double quote - the symbol for this stock.
"> These two atoms match a double quote followed by a less-than symbol.
([^<]*) This subexpression will be used to set the value of the second sub-match variable (value). It will match characters until the first less-than symbol.

The default behavior for the Tcl regular expression parser is to match the maximum number characters to a quantified expression. For example, this command

regexp {A(.*)A} AbcdAbcdAbcd full submatch

would extract the characters between the first and third A (the string "bcdAbcd") in the submatch variable, rather than the characters between the first and second A.

With the new regexp implementation, a question mark (?) can be used to change how a quantifier is used. If a question mark follows the quantifier +*, the regular
expression engine will use the minimum number of characters necessary to match an expression, instead of the maximum.

For example, this regular expression

regexp {A(.*?)A} AbcdAbcdAbcd full submatch

places the characters bcd in the submatch variable.

We can simplify the regular expression for extracting the stock symbol and last price by using the dot atom, instead of a class to describe the characters we'll accept,
and a question mark with the plus sign, to force the parser to match the smallest possible match, instead of the largest.

The new regular expression looks like this:

regexp {arts\?Symbol=(.+?)">(.+?)<} $data match symbol last

Here's a complete robot for getting the current stock prices:

package require http

foreach symbol $argv {
 set url "http://www.newsalert.com/free/stocknews?Symbol=$symbol"

 set id [::http::geturl $url]
 set data [::http::data $id]
 regexp {arts\?Symbol=(.+?)">(.+?)<} $data match symbol price

 puts "$symbol last traded at $price"
 }

This robot will accept a list of stock symbols as command line arguments, and report the last trade price for each stock. You can run this script from a crontab and get
quotes mailed to you when you'd like, without ever needing to click a button or view an advertisement.

The next Tclsh Spot article will look at more regular expression features, and ways to get the rest of the information out of the html page.

Default Title file:///clif/BOOKS/TclshSpot/5/article5.html

3 of 3 09/09/2014 10:06 PM

