
The previous Tclsh Spot articles discussed building a stock quote gathering robot, saving the data and
using the BLT graph widget to display a stock’s history.

This article will describe more details about the BLT graph widget and discuss using Tcl’s associative
arrays.

The first step for any sort of data analysis is getting the data. In this case, that means reading the stock
data from the file created by the stock quote retrieval robot.

The stock quote robot produces a datafile with lines that resemble this:

 955127760 SUNW {95 3/8} {2 11/16} 2.9 13:00 {93 7/8} 96 {93 1/32} 6,938
 955127780 INTC {134 13/16} 5 3.9 13:00 {131 3/8} {136 17/32} {131 5/16} 15,590

These are deliberately formatted (by the robot) to be Tcl lists, to make reading them a bit simpler. But,
the data isn’t quite as ready-to-use as it might be.

The problems to address are:

the prices are given as fractions, instead of decimal numbers.
the trade volumes are written with commas.
the data for many companies is mixed into one file.

The first two problems are data representation issues. we can deal with them with a single data
conversion procedure to convert fractions to decimals and strip out commas.

This procedure uses the regexp command to convert a fraction like 2 1/2 to an arithmetic expression
like 2 + 1.0/2.

Converting 1/2 to 1 / 2.0 looks strange. By default, the Tcl expr command doesn’t convert from
integer to float before performing math operations. However, if one value is a float, other values are
promoted before the operation is performed. Thus, the operation 1 / 2 returns an integer 0, while 1.0
/ 2 returns a float 0.5.

The regsub command is useful for lots of string conversion applications. In this case, we can use it to
strip unwanted commas from the volume data.

Here’s a procedure that will convert a number in one of the two unwanted forms (fraction, or including a
comma) into a decimal.

proc normalize {val} {

 # Only do fraction to decimal conversion if a fraction exists.

 if {[regexp {([0-9]* +)*([0-9]*)/([0-9]*)} $val m whole num denom]} {
 set val [expr $whole + ($num / $denom.0)]
 }

 # Delete any commas that might be in the value

 regsub -all "," $val "" val

 return $val
}

That leaves us with the third problem - separating the data for multiple companies into the appropriate
lists.

Pure Tcl supports three data structures.

simple variables like numbers or strings.
lists.
associative arrays.

The associative array was first introduced to Tcl in the TclX extension, and was quickly merged into the
Tcl core. An associative array is an array structure in which the indices are strings, instead of numbers.
This concept is perfectly obvious if you’re familiar with awk or perl, or perfectly bizarre if you’ve
always worked with languages like FORTRAN or C.

Associative arrays look and act just like normal Tcl variables, except that the array name is followed by
a pair of parentheses that enclose the index value.

The associative array is the most powerful data structure in Tcl. Using some do-it-yourself naming
conventions, you can emulate most of the complex data structures that other languages support.

For instance, using an associative array lets us write code like:

 set fruitPrice(apple) .5
 set fruitPrice(banana) .25

instead of the C equivalent:

struct fruit {
 char *name;
 float cost;
} fruitPrice[2];

 fruitPrice[0].name = "apple";
 fruitPrice[0].cost = 0.5;
 fruitPrice[1].name = "banana";
 fruitPrice[1].cost = 0.25;

If we want to track more data about our fruits, we can define a naming convention to use, we might
decide that the indices will be the fruit name followed by a data description. For example:

 set fruitInfo(apple.price) .5
 set fruitInfo(apple.inventory) 500
 set fruitInfo(apple.color) red

 set fruitname "banana"
 set fruitInfo($fruitname.price) .25

 set fruitInfo($fruitname.inventory) 1000
 set fruitInfo($fruitname.color) yellow

When it comes to graphing the stock data, we want a list of timestamps and a list of prices for a given
company. So, to make life (or at least this example) simple, we declare that these lists will be saved in
an associative array with an index naming convention of StockSymbol.Description. For example
Data(SUNW.price) will have a list of selling prices, and Data(SUNW.date) will have a list of
timestamps.

The data in the file is a set of lines, and each line is a list consisting of TimeStamp, Stock Symbol,
Selling Price, Absolute Change, Percent Change, Time of quotes, Openning Price, High Price, Low
Price, and Volume.

Since we know that the second item in the list will be the stock symbol, we can extract that value from
the list with the lindex command. Note that the first item in a list is at position 0.

One of the features of the foreach is that it can iterate through multiple lists simultaneously, retrieving
the first item from each list, then the second item, etc. The syntax for this is:

 foreach variable1 list1 variable2 list2 ...variableN listN {...}

This code will read the lines from the file and extract the stock symbol from each line. It then iterates
through the list of descriptive names, and a list of values, and appends the current value to the
appropriate list within the associative array.

proc readData {infl} {
 global Data

 while {[set len [gets $infl line]] >= 0} {
 set id [lindex $line 1]
 foreach n {date id price change pct dt o high low vol} v $line {
 lappend Data($id.$n) [normalize $v]
 }
 }
}

After this procedure has run, the associative array Data will have lists of all the data we’ve collected,
indexed by stock symbol and type of data.

Now, we can get back to making graphs.

Just on general principles, I don’t want to create our graph in mainline code and pack it on the main
window. Putting this code into a procedure, with the parent frame as an argument, makes it easier to
merge this graph into a larger application when we have multiple frames to deal with.

This procedure will create an empty graph with just a label and return the name of the new graph
widget:

proc makeGraph {parent name} {
 global Data

 :blt::graph $parent.g_$name -title "Stock Data for $name" -width 600 -height 400

 return $parent.g_$name
}

The graph widget displays lines as graph elements. A graph element is an object that contains a list of
X, Y values and some options to define how the line should be drawn.

Syntax: widgetName element create ?option value?

We can draw a line showing price vs time by adding this code to the makeGraph procedure after the
graph command.

set name "SUNW"
$parent.g_$name element create "$name Price" -xdata $Data($name.date) \
 -ydata $Data($name.price) -symbol none

This procedure will create a graph like this, with a label and legend, and with the X axis tics listed as
seconds since the epoch.

This is better than nothing, but not much. However, the BLT package has lots of facilities for
customizing graphs.

For instance, the first thing I want to change on this graph is the tic labels.

The BLT widget command axis can be used to configure a graphs X and Y axes.

Syntax: widgetName axis configure axisName -option1 value1 ...

widgetName The name of the graph object that contains this axis.
axis configure Identifies this command as configuring the axis

axisName Identifies which axis is being configured. The default axes are
X The bottom X axis
X2 The Top X axis
Y The Left-hand Y axis
Y2 The Right-hand Yaxis

-option value An option name and the new value to associate with that option. Options include:

-fmt The name of a function to use to format the tic labels
-max The maximum value to display
-min The minimum value to display
-hide 1 to hide an axis, 0 to display. By default, the X and Y axes are displayed,

and the X2 and Y2 are hidden.

So, to show the X axis tics as Month/Day, we can use the Tcl clock command to convert the seconds
since the epoch into a MM/DD format with a procedure like this:

proc fmt {graph sec} {
 return [clock format $sec -format {%m/%d}]
}

And tell the graph to use this procedure to format the tics by adding these lines to the makeGraph
procedure.

 # Format the x-axis tick labels as Month/Day
 $parent.g_$name axis configure x -command fmt

This is better, but we’ve still collected a lot of data we aren’t viewing. Like, the trade volume, for
instance.

We could make another line on the graph to show the volumes, but lines imply that the there is
continuity between values, and there is no connection between yesterday’s and today’s trade volume.

A bar chart is a more appropriate way to display this info. We can generate barcharts on our BLT
graphs. In fact, there is a whole other widget (barchart) designed for barcharts, but for this application,
it makes more sense to put the bars on the price graph.

The command to build a bar is:

Syntax: widgetName bar create label ?-option value?

bar create Create a new set of bars on the graph.
label A label that describes this barchart. This string will be displayed in the legend.
-option value Option and value pairs to describe this barchart. Options include:

-xdata A list of values for the X axis.

-ydata A list of values for the Y axis.
-mapy The axis to map this data against. Defaults to the left hand Y axis.
-mapx The axis to map this data against. Defaults to the bottom X axis.
-fg The foreground color for the bars
-bg The background color for the bars
-barwidth How wide to draw the bars. Defaults to a single pixel.

One of the tricks with putting two sets of data on the same graph is how to scale the data. Since a high
price for a stock is around 100, while a low volume is around 10,000 shares, we really can’t plot both of
these against the same Y axis.

This is where the Y2 axis, and the -mapy option come in. We can map the prices on a 0-100 scale on the
left axis, and volume on a 0-100,000 scale on the right axis.

In fact, we don’t have to declare the sizes of the axes. The graph widget will automaticly scale the axes
from the minimum to maximum value in the data set.

So, to generate a volume barchart on the graph with our price graph, we add this line to the makeGraph
command:

 $parent.g_$name bar create "$name Volume" -xdata $Data($name.date) \
 -ydata $Data($name.vol) -mapy y2 -fg green -bg green \
 -barwidth 2000

Since the dates on the X axis are the same for the price and volume graphs, we don’t need to use
separate axes for that data. The -barwidth 2000 makes the bars a little wider than a normal single-pixel
line (2000 seconds wide, if you are counting units).

What this doesn’t do is display the values. By default, the X2 and Y2 axes are hidden. But, adding this
line will display the Y2 axis:

 $parent.g_$name axis configure y2 -hide 0

That leaves the high and low data. It would be nice to see the range of values in a day, and whether our
stock closed at the top of the range or bottom.

Another feature that BLT supports is markers. Markers are things that you can put at location on a
graph. They can be text messages (like "This is when the SEC cancelled trading"), or bitmaps (like a
happyface when the stock splits), or polygons, or lines.

In this example, we’ll use line markers to show the high and low prices for a stock, similar to the error
lines in the graphs from your old physics lab.

The syntax for creating markers is:

Syntax: widgetName marker create type ?-option value?

widgetName The name of the graph widget
marker create Create a marker.
type The type of marker being created. The valid types include text, line, bitmap,

image, polygon, and window.
-option value An option/value pair. The options available vary depending on what type of marker

is being created. Options for line markers include:
-outline The color for the line.
-coords A list of coordinates to define the line.

To create these markers, we need to tell the graph widget to draw a vertical line from the low price to the
high price at each vertex . We can do this with the create marker command, and another loop with
multiple lists and variables.

But, while we’re doing that, we might as well track the maximum and minimum prices in the high and
low dataset. Since the graph was scaled to the maximum and minimum closing prices, there may be
highs and lows outside that range.

Like most of Tcl, the BLT graph widget is introspective. You can query it to find out things like what
current configuration values are using the same configure and cget subcommands that are supported
by native Tk widgets.

Our code can query the Y axis to find out what the max and min values in the price data are before we
start looking at the high and low data.

The problem is that the graph widget hasn’t looked at the data yet. When we invoked the graph and
create element commands the interpreter didn’t actually create a graph. It placed events on the event
queue to create the widgets as soon as the interpreter isn’t busy doing something else (like evaluating
our procedure). The event queue won’t be checked until after our process finishes the makeGraph
procedure.

The solution to this problem is to use the update command. The update command will cause the event
queue to be processed before returning. The update command comes in two flavors, update which will
process all events, and update idle which will only process events that are in the idle loop. Updating
graphics objects is an idle loop task, so that’s the flavor we should use for this application.

So, this code will force the idle loop to be processed, find the starting maximum and minimum prices,
draw high/low lines at each price, and then reconfigure the axis to show the new range.

 # Create vertical high/low lines at the vertices, and find max & min.
 foreach d $Data($name.date) h $Data($name.high) l $Data($name.low) {

 $parent.g_$name marker create line -coords [list $d $h $d $l] \
 -outline blue

 if {$l < $min} {set min $l}
 if {$h > $max} {set max $h}

 }

 # Now expand the Y axis to the real min/max range.

 $parent.g_$name axis configure y -max $max
 $parent.g_$name axis configure y -min $min

The code we’ve discussed in this article will generate a display that looks like this from a command like
wish stockShow.tcl SUNW:

This code, and code from other Tclsh Spot articles, is available on my new website at
http://www.noucorp.com

This is plenty of info, but running a new command line task for each stock is too much finger work. The
next article will discuss ways to display multiple stocks in this application.

NOTE TO EDITORS: This article is already long. Feel free to delete this code listing if you need
space.

#!/usr/local/bin/wish

package require BLT

set Graph(dataName) stock.data
set name $argv

##
proc normalize {val}--
Convert fractions to decimals and remove any commas

Arguments
val A numeric value

Results
Returns a legal floating point or integer value.

proc normalize {val} {

 # Only do fraction to decimal conversion if a fraction exists.

 if {[regexp {([0-9]* +)*([0-9]*)/([0-9]*)} $val m whole num denom]} {
 set val [expr $whole + ($num / $denom.0)]
 }

 # Delete any commas that might be in the value
 regsub -all "," $val "" val

 return $val
}

##
proc readData {infl}--
Reads data from a stock data file
Arguments
infl A channel to the data file

Results
Creates lists of values in the Data global associative array,
sorted by StockSymbol.DataType

proc readData {infl} {
 global Data

 while {[set len [gets $infl line]] >= 0} {
 set id [lindex $line 1]
 foreach n {date id price change pct dt o high low vol} v $line {
 lappend Data($id.$n) [normalize $v]
 }
 }
}

##
proc fmt {graph sec}--
Formats a time-since-epoch time into MM/DD
Arguments
graph The name of the graph which includes this tic mark.
sec Seconds since the Epoch.
Results
Returns the appropriate MM/DD value.

proc fmt {graph sec} {
 return [clock format $sec -format {%m/%d}]
}

##
proc makeGraph {parent name}--
Makes a stock graph.
Arguments
parent A parent frame to hold this graph
name The stock symbol to use as a key to access the data

to display in this graph.
Results
Creates a new graph widget, and returns the name of that widget.

proc makeGraph {parent name} {
 global Data

 if {![winfo exists $parent.g_$name]} {
 # Create the graph
 ::blt::graph $parent.g_$name -title "Stock Data: $name" -width 600 -height 400

 # Format the x-axis tick labels as Month/Day
 $parent.g_$name axis configure x -command fmt

 # Create a line showing the stock price when the robot ran.
 $parent.g_$name element create "$name Price" -xdata $Data($name.date) \
 -ydata $Data($name.price) -symbol none

 # Generate a bar chart for volume, and display the second Y axis
 # that the bar chart references

 $parent.g_$name bar create "$name Volume" -xdata $Data($name.date) \
 -ydata $Data($name.vol) -mapy y2 -fg green -bg green \
 -barwidth 2000

 $parent.g_$name axis configure y2 -hide 0

 # Do an update to force the graph to run through the data and
 # canculate the min and max values.

 update idle;
 set max [$parent.g_$name axis cget y -max]
 set min [$parent.g_$name axis cget y -min]

 # Create vertical high/low lines at the vertices, and find max & min.
 foreach d $Data($name.date) h $Data($name.high) l $Data($name.low) {

 $parent.g_$name marker create line -coords [list $d $h $d $l] \
 -outline blue

 if {$l < $min} {set min $l}
 if {$h > $max} {set max $h}
 }

 # Now expand the Y axis to the real min/max range.

 $parent.g_$name axis configure y -max $max
 $parent.g_$name axis configure y -min $min
 }

 return $parent.g_$name
}

set infl [open $Graph(dataName) r]
readData $infl
close $infl

set w [frame .graphs]

pack $w -side bottom

pack [makeGraph $w $name]

