
THE MAGAZINE OF USENIX & SAGE
April 2003 • volume 28 • number 2

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

Flynt: The Tclsh Spot

41April 2003 ;login:

�

PR

O
G

RA
M

M
IN

G

the tclsh spot

The previous two Tclsh Spot articles described building a

Tcl extension to push packets onto a network, and

using the Spirent AX-4000 to characterize the rate at

which packets could be sent.

We generated the IP packet by using tcpdump to sniff a packet
and by copying the data into the packet-generating program.
This was adequate to test that the program could work but is
not versatile enough for using the packet generator to test other
systems.

Modern networks use a “Russian doll” paradigm to define
packets of information. A small packet is embedded in a larger
packet, which is embedded in a still larger packet. And, like the
dolls, each packet looks much like the others, but with subtle
differences.

For example, a DNS message contains an identification field,
some flags, and a payload of a set of questions and answers.
This packet is enclosed in a UDP packet that includes source
and destination port identifiers and a payload that consists of
the DNS packet. The UDP packet gets enclosed into an IP
packet, with source and destination IP addresses as identifiers
and a payload of the UDP packet. And the IP packet will finally
get enclosed in an Ethernet or PPP packet, with machine iden-
tifiers and a payload that consists of the IP packet.

From a software design point of view, a set of similar entities
with small differences is a classic situation for an object-ori-
ented design. You can construct a base object with the core
functionality and then derive special cases for the unique fea-
tures.

The [incr Tcl] Tcl extension provides support for full-featured
object-oriented programming, with classes, protection, inheri-
tance, etc. For applications that require a rigorous OO imple-
mentation, this is an ideal solution. The standard Tcl

distribution (ActiveTcl from http://www.activestate.com)
includes [incr Tcl].

One of the Tcl features that makes [incr Tcl] possible is the
namespace command (the [incr Tcl] extension introduced the
namespace command to Tcl). The Tcl namespace provides
hooks to do OO-style programming in Tcl. Using only the stan-
dard namespace command, you can implement inheritance,
aggregation, and simple protection.

For this application, where I expect to have a relatively small
number of object types (types of data packets – IP, ICMP, TCP,
etc.) and a large number of objects (as many data packets as I
need), I elected to use a very lightweight model in which the
packet-type objects contain static data and methods, while the
packet objects contain only data.

A Class/Object diagram of this design would resemble this:

The data objects include a single variable – an associative array
indexed by the names of the fields within a packet using a par-
ticular protocol. The data is the value for that field. For exam-
ple, an object named packet_1 might be an ICMP packet, which
would have indices like type, code, and checksum (the minimal
ICMP header fields).

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

THE TCLSH SPOT �

http://www.activestate.com

Vol. 28, No. 2 ;login:42

One extra index is used to hold a bytestream representation of
the packet, with the appropriate ordering and padding. This
index is named packet.

The data objects always inherit a few basic methods from the
packet class, which has no associated data, and inherit public
methods and data from one parent class that describes the pro-
tocol.

The parent classes contain information to define the layout of
fields within a packet of this type, a lookup table to convert
from common mnemonics for this type of packet to a numeric
value, and methods that implement the specific rules for build-
ing this type of packet. These classes invoke generic functions in
the dataManipulation class as they need them.

This set of abstractions can be implemented with just the name-
space command – no need for fancy OO extensions. While 700
lines of code to build ICMP, TCP, UDP, IP, and Ethernet packets
is rather small, it’s too much to completely discuss in this arti-
cle. This article will introduce the interesting features of using
the namespace command to implement this, and show how to
test the output.

The Tcl namespace command provides a private area where
static data and procedures can be kept. The same data and
variable names can be used in multiple namespaces. Tcl name-
spaces are created and manipulated with the namespace com-
mand, which includes several subcommands. The namespace
eval command creates new namespaces. It will evaluate a Tcl
script within a namespace (and create the namespace if neces-
sary.)

Syntax: namespace eval namespaceID arg1 ?argN...?

Create a namespace, and evaluate the script
arg in that scope. If more than one arg is pres-
ent, the arguments are concatenated into a
single script to be evaluated.

namespaceID The identifying name for this namespace.

arg* The script or scripts to evaluate within name-
space namespaceID.

This code will create a namespace that holds an associative
array, and includes two functions to set and retrieve array val-
ues.

namespace eval packet_1 {
variable fieldArray

proc setField {name value} {
variable fieldArray
set fieldArray($name) $value

}

proc getField {name } {
variable fieldArray
return $fieldArray($name)

}
}

The variable command declares that a variable exists within a
namespace and may initialize the variable’s value. The variables
declared with the variable command are persistent and will not
be destroyed when the namespace scope is exited. These vari-
ables are easily accessed by procedures within their namespace,
but not from other namespaces.

Note that the syntax for the variable command is different from
the global command. The variable command supports setting
an initial value for a variable, while the global command does
not.

Syntax: variable varName ?value? ?varNameN? ?valueN?

Declare a variable to exist within the current name-
space. The arguments are pairs of name and value
combinations.

varName The name of a variable.

?value? An optional value for the variable.

The first variable fieldArray declares that the variable exists. The
next variable fieldArray, inside the setField procedure, maps the
fieldArray variable from the namespace scope into the local pro-
cedure scope.

The variable fieldArray is persistent, just like global variables,
but exists in the packet_1 object.

Tcl namespaces are named in a tree fashion, similar to a direc-
tory tree. The separator for namespaces is a double-colon (::),
and the top namespace (the default when you start up a Tcl
shell) is also ::.

The first example creates a namespace named packet_1 in the
scope where the command was evaluated. Assuming it is evalu-
ated in the top-level scope, it creates the namespace ::packet_1,
which contains a variable ::packet_1::fieldArray and two proce-
dures, ::packet_1::getField and ::packet_1::setField.

Invoking the packet object’s procedures by full namespace path
resembles the C++/Java type of naming convention:
packet_1::getField resembles packet_1->getField. This isn’t
really the best technique for accessing methods in Tcl. This style
of invoking the procedures exposes the implementation of the
object and makes the packet_1::getField invocation appear to be
a unit, instead of the packet_1 being an object and getField
being a method.

43April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GA Tcl-style object would be a command, and the methods
would be subcommands.

Since Tcl has separate resolution tables for namespace names,
variable names, and procedures, we can use the same name for
a namespace, and the procedure to access it. This script will cre-
ate a packet_1 command:

proc packet_1 {args} {namespace eval packet_1 $args}

When a variable named args is the last argument in a procedure
definition, Tcl will assign any unassigned arguments to that
variable. This allows you to define procedures that can be
invoked with any number of arguments.

We can create namespaces with any script. For instance, this is
equivalent to the first example:

set packetDef {
variable fieldArray

proc setField {name value} {
variable fieldArray
set fieldArray($name) $value

}

proc getField {name } {
variable fieldArray

return $fieldArray($name)
}

}

namespace eval packet_1 $packetDef
proc packet_1 {args} {namespace eval packet_1 $args}

This makes it easy to create multiple packet namespaces, each of
which includes its own copy of the fieldArray variable, which
may contain unique values.

proc makePacket {name} {
global packetDef
namespace eval $name $packetDef
proc $name {args} "namespace eval $name \$args"

}

makePacket packet_1
makePacket packet_2
makePacket packet_3

A downside to this technique is that the procedures are also
duplicated in each namespace. While the variables in these
namespaces are unique, the procedures are identical, and we
don’t need a new copy in each namespace. With three objects
this doesn’t matter, but if our application had several thousand
objects, the overhead of duplicating the procedures could start
to be a problem.

The namespace import and namespace export commands solve
this problem (and several others we’ll address later).

The namespace export command lists commands that are
available to be imported. You would consider these public meth-
ods in a Java or C++ environment.

Syntax: namespace export pattern1 ?patternN...?

Export members of the current namespace that match
the patterns. Exported procedure names can be
imported into other scopes. The patterns follow glob
rules.

pattern* Patterns that represent procedure names and data
names to be exported.

The flip side is the namespace import command, which will
map a procedure that exists in one namespace into the current
namespace.

Syntax: namespace import ?-force? ?pattern1 patternN...?

Imports procedure names that match a pattern.

-force If this option is set, an import command will overwrite
existing commands with new ones from the pattern
namespace. Otherwise, namespace import will throw
an error if a new command has the same name as an
existing command.

pattern* The patterns to import. The pattern must include
thenamespaceID of the namespace from which items
are being imported.

One trick to the import command is that it maps the procedure
name into the current namespace, but when the procedure is
evaluated, it evaluates within the namespace it was defined in.
This makes the namespace import command work well for
implementing inheritance, but makes a slight problem when we
try to use it naïvely to avoid duplicating procedure bodies.

The code below doesn’t work.

It sets values in ::BADprocs::fieldArray, rather than
::packet_1::fieldArray or ::packet_2:fieldArray.

namespace eval BADprocs {
namespace export setField getField

proc setField {name value} {
variable fieldArray
set fieldArray($name) $value

}

proc getField {name } {
variable fieldArray
return $fieldArray($name)

}
}

THE TCLSH SPOT �

Vol. 28, No. 2 ;login:44

set packetDef {
variable fieldArray
namespace import ::BADprocs::*

}

namespace eval packet_1 $packetDef
namespace eval packet_2 $packetDef

proc packet_1 {args} "namespace eval packet_1 \$args"
proc packet_2 {args} "namespace eval packet_2 \$args"

packet_1 setField foo bar1
packet_2 setField foo bar2

The Tcl upvar command is the solution for this. Upvar will map
a variable from a higher level scope into the current scope.

Syntax: upvar ?level? varName1 localName1 ?varName2? ?localName2?

Maps a variable from a higher variable scope
into the current variable scope.

?level? An optional level to describe the level from
which the variable should be linked. This
value may be a number or the # symbol fol-
lowed by a number.

The level defaults to 1, the level of the script
that invoked the current proc.

varName* The name of a variable in the higher scope to
link to a local variable.

localName* The name of a variable in the local scope.
This variable can be used in this script as a
local variable. Setting a new value to this vari-
able will change the value of the variable in
the other scope.

Normally, the upvar command is used to implement call-by-
name (instead of Tcl’s normal call-by-value paradigm). For
example, a procedure to print the contents of an array would
resemble this:

proc printArray {arrayName} {
upvar $arrayName a
foreach index [array names a] {

puts "$index: $a($index)"
}

}

array set demo {index1 val1 index2 val2}
printArray demo

When doing object-style programming in Tcl, we can use the
upvar to map the fieldArray variable from the packet_* name-
spaces into the procs namespace like this:

namespace eval procs {
namespace export setField getField

proc setField {name value} {
upvar fieldArray localArray
set localArray($name) $value

}

proc getField {name } {
upvar fieldArray localArray
return $localArray($name)

}
}

set packetDef {
variable fieldArray
namespace import ::procs::*

}

proc makePacket {name} {
global packetDef
namespace eval ::$name $packetDef
proc $name {args} “namespace eval $name \$args”

}

makePacket packet_1
makePacket packet_2

packet_1 setField foo bar1
packet_2 setField foo bar2

Note how the namespace eval command in makePacket
prepends the :: to the namespace identifier. Like file-system
paths, namespace identifiers may be absolute or relative. The
namespace identifier ::packet_1 defines a namespace that is a
child of the global scope. The namespace identifier packet_1
defines a namespace that is a child of the current scope, which
could be anything.

Creating a procedure packet_1 that uses namespace eval
packet_1 setField rather than directly invoking packet_1::set-
Field creates an entry on the procedure stack for code evaluated
in the packet_1 namespace. This allows the upvar command to
map the fieldArray into the ::procs namespace. If you intend to
invoke methods as namespace::method, you’ll need to define
the methods within the namespace rather than importing them.

This technique can be generalized further to create class and
new commands, just like those in Java, C++, or [incr Tcl]. Sev-
eral pure Tcl object-oriented programming packages such as
stooop and SNIT use similar techniques. Since this application
only creates one type of object (data packets), the simple
makePacket command is sufficient.

Using this technique, we can define packets that contain named
fields with numeric values with code like this:

45April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GmakePacket icmp_packet_1
icmp_packet_1 setField sourcePort 9999
icmp_packet_1 setField destPort 25
icmp_packet_1 setField sequence 1234
...

These values can be extracted, and assembled in the proper
order, with the proper padding to create a network packet. The
next trick is to define the order of the fields, sizes, etc.

In C++, Java, or [incr Tcl] the packet class would be an abstract
class, and we’d derive TCP, UDP, ICMP, etc. classes from this
base class with the field definitions.

In pure Tcl, we can define a namespace that contains field defi-
nitions and methods for creating network packets and import
those methods into our packet object.

We commonly think of a network packet as a series of bytes.
However, some fields (header length, TCP flags) are less than 8
bits long. To generalize the algorithms, I decided to build the
packets as bitstreams and define the fields as bit offsets and
lengths. After the bitstream is completely assembled, it’s con-
verted to bytes.

The protocol definition namespace resembles:

namespace eval icmp {
name bit-offset bit-length
set fields {

type 0 8
code 8 8
checksum 16 16 }

Place a bytestream representation of the packet in
the fieldArray associative array.
proc fillPacket {} {

upvar fieldArray f
variable fields

foreach {name start len} $fields {
lappend bitStream [makeElement $len $f($name)]

}

set f(packet) [Bits2Bytes $bitStream]
}

Return a bitstream padded to the required length.
proc makeElement {len value} {}

Convert a bitstream to a hexadecimal bytestream.
proc Bits2Bytes {bitStream} {}

}

The definition of a packet object now looks like this:

namespace eval icmp_packet_1 {
variable fieldArray ;# Array of values for fields

namespace import ::proc::*

namespace import ::icmp::*
}

A bytestream packet can be constructed with code like:

icmp_packet_1 setField type 0
icmp_packet_1 setField code 0
icmp_packet_1 setField checksum 0
icmp_packet_1 fillPacket

The calls to setField will be evaluated in the ::procs namespace,
which will use upvar to map the ::icmp_packet_1::fieldArray
variable into the local procedure scope.

The call to fillPacket will be evaluated in the ::icmp namespace
and will use upvar to map the ::icmp_packet_1::fieldArray vari-
able into this scope. The ::icmp::fields variable is already in the
correct scope.

By defining different values in the fields variable, we can define
different protocols. These descriptions can be used to create dif-
ferent types of data packets by importing the appropriate
namespace.

This leads to a more generalized makePacket procedure:

proc makePacket {name type} {
global packetDef
namespace eval ::$name $packetDef
namespace eval ::$name "namespace import ::${type}::*"
proc $name {args} "namespace eval $name \$args"

}

makePacket icmp_packet_1 icmp

The final useful tweak to the makePacket procedure is to sup-
port setting the fieldArray values when the object is created,
instead of creating an empty object and requiring multiple set-
Field calls.

The array set command assigns values to multiple associative
array indices in a single command. For example, this command
would assign 0s to fieldArray(type), fieldArray(code), and fieldAr-
ray(checksum):

array set fieldArray {type 0 code 0 checksum 0}

This makePacket procedure definition creates the new object,
populates the fieldArray variable, inherits the field definition
and packet-generating methods, and creates the procedure to
use for further interaction with the new object.

proc makePacket {name type args} {
global packetDef
namespace eval ::$name $packetDef
namespace eval ::$id [list array set fieldArray $args]
namespace eval ::$name “namespace import ::${type}::*”
proc $name {args} "namespace eval $name \$args"

}

THE TCLSH SPOT �

Vol. 28, No. 2 ;login:46

...
makePacket icmp_packet_1 icmp type 0 code 0 checksum 0

In actual fact, this package is a bit larger and more complex
than described. It allows values to be defined with mnemonics
as well as numbers, translates from Internet and Ethernet style
addresses into bytestreams, checks for a complete set of values,
etc. The use of namespaces to implement an abstract class and
lightweight objects, however, works as described.

In the actual packet-generating package, the makePacket com-
mand is named make and is contained in the ::packet:: name-
space.

The first thing to do with the network packet package is to con-
firm that it generates the expected packets. There are more ways
to test software than there are software writers. In this case, the
tests break down into two categories:

1. Tests that compare the packet data to a known good
bytestream

2. Tests that use external systems to analyze packets “off the
wire”

The Tcl interpreter comes with a package for automating
regression tests. This package is used to test the Tcl interpreter
(and many other Tcl packages) and to invoke make tests.
The two workhorses of this suite are:

Syntax: tcltest::test name desc constraint script expectedAnswer

Run a test, and compare the results to the
expected results.

name The name of this test – to use when reporting
pass/fail results.

desc The description of this test – to use when
reporting pass/fail results.

constraint A set of constraints – to define when this test
should be evaluated. (For example, only test
on certain platforms, if other tests pass, etc.)

script The test script to evaluate.

expectedAnswer The expected result.

A simple test would resemble:

tcltest::test expr-1 "Confirm that expr will add 2+2" {} \
{expr 2+2} 4

If the test fails (for instance, if we declare a wrong value for the
expectedAnswer), Tcl generates output resembling this:

==== expr-1 Confirm that expr will add 2+2 FAILED
==== Contents of test case:
expr 2+2

—— Result was:
4
—— Result should have been (exact matching):
5
==== expr-1 FAILED

After running the tests, we can generate a report with the
::tcltest::cleanupTests command. The ::tcltest::cleanupTests
command generates a report resembling this:

: Total 2 Passed 1 Skipped 0 Failed 1

To test the packet-generating package, we can generate the
expected packets by hand and compare these values to the out-
put from the code.

A set of tests like this can exercise a package and confirm that it
behaves as expected:

package require tcltest
package require packet

set p1 [packet::make ICMP type ICMP_ADDRESS code 0 \
checksum 0 identifier 1 sequence 2 subnet 00]

set expected [list 0x11 0x00 0xee 0xfc 0x00 \
0x01 0x00 0x02 0x00 0x00 0x00 0x00]

tcltest::test makeICMP-1 {ICMP_ADDRESS} {} \
{$p1 getField packet} $expected

... more tests
::tcltest::cleanupTests

This produces a regression suite that runs quickly, provides a
nice summary of results, and is easy to create. The downside is
that it confirms that the package does what I expect, which may
not be what’s correct.

This is where an outside validation tool is useful. One easily
available tool for this testing is tcpdump. We can generate pack-
ets, transmit them, and let tcpdump sniff the packets, do some
analysis, and report problems.

For instance, the tcpdump command

tcpdump -s 15000 -l -x -n -v -i eth1

will generate output like this:

14:22:12.963048 192.168.9.2 > 192.168.9.17: icmp:
address mask request (ttl 32, id 2, len 32)

4500 0020 0002 0000 2001 0778 c0a8 0902
c0a8 0911 1100 eefc 0001 0002 0000 0000

14:22:12.963051 192.168.9.2 > 192.168.9.17: icmp:
address mask request (wrong icmp csum) (ttl 32, id 2, len 32)

4500 0020 0002 0000 2001 0778 c0a8 0902
c0a8 0911 1100 ee99 0001 0002 0000 0000

47April 2003 ;login:

�

PR

O
G

RA
M

M
IN

GWhen testing packets generated with this code:

lappend auto_path .

package require packet
package require ip
package require icmp
package require ether
package require tcp
package require udp
package require dnetlib

load ./libdnet.so

set e [dnet::open eth1]

Generate a good icmp Address Mask Request.
set icmp1 [packet::make ICMP type ICMP_ADDRESS code 0 checksum 0 \

identifier 1 sequence 2 subnet 00]

Generate a BAD CHECKSUM icmp Address Mask Request.
set icmp2 [packet::make ICMP type ICMP_ADDRESS code 0 checksum 99 \

identifier 1 sequence 2 subnet 00]

Embed the icmp packets into IP packets.
set ip1 [packet::make IP version 4 hdrlen 5 tos 0 length 32 id 2 flag 0 \

offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} payload [$icmp1 getField packet]]

set ip2 [packet::make IP version 4 hdrlen 5 tos 0 length 32 id 2 flag 0 \
offset 0 ttl 32 protocol ICMP checksum 0 source \
192.168.9.2 dest 192.168.9.17 options {} payload [$icmp2 getField packet]]

Embed the IP packets into Ethernet packets.
set ep1 [packet::make ETHER dest 00:E0:4C:00:14:4D src 00:A0:CC:D1:B6:00 \

type IP payload [$ip1 getField packet]]
set ep2 [packet::make ETHER dest 00:E0:4C:00:14:4D src 00:A0:CC:D1:B6:00 \

type IP payload [$ip2 getField packet]]

Convert the Ethernet packets into binary.
dnet::importPacket $ep1
dnet::importPacket $ep2

Send the binary packets out into the world.
dnet::send $e $ep1
dnet::send $e $ep2

These two sets of tests (one internal, and one external) are probably adequate. But proper testing should use the most expensive and
complex piece of equipment you can access. After all, how else can you justify nifty toys?

The Spirent AX-4000 was described briefly in the previous Tclsh Spot article. The next article will discuss using the AX-4000 to cap-
ture and analyze the output of the packet generator.

THE TCLSH SPOT �

