
36 Vol. 29, No. 1 ;login:

the tclsh spot

Previous Tclsh Spot articles have described some of the
details in building a firewall validation system. This
application uses an agent style of client-server relation-
ship, with one master program controlling several
agents that run on different physical platforms to gen-
erate packets and analyze how they are processed.

Tcl’s clean-socket mechanism, support for importing code at
runtime, and support for safe child interpreters make it a pow-
erful tool for agent applications.

However, the base distribution of Tcl supports only unen-
crypted TCP sockets. When transferring code snippets to be
executed on a client machine, we want to ensure that the data
has not been modified and that the sender is a system we trust.

The SSL protocol (initially developed by Netscape to provide
secure Web transactions) is an application-independent proto-
col that supports server and client authentication. With its sup-
port for authenticating servers and negotiating encryption keys,
SSL provides the strong encryption and validation tools that
this type of application requires.

Since it’s so easy to extend Tcl with new commands, it wasn’t
long before SSL support was added with an extension.

The TLS (Transport Layer Security) extension is an interface to
the OpenSSL libraries that provides for validated, encrypted
conversations over a TCP socket. This is a mature package used
by the Tcl http daemon to support secure Web transactions as
well as numerous other applications. The TLS extension was
originally written by Matt Newman and has been maintained
by several folks, including Jeff Hobbs and Dan Razell.

This article describes the TLS extension, and how to set up a
secure link between a master and the remote agents, and intro-
duces use of a safe child interpreter to evaluate suspect code

from a remote site. Many thanks go to Dan Razell for his help in
understanding how TLS works and his tips on how to construct
a secure client and server.

The first step is to download the TLS code from http://
sourceforge.net/projects/tls/. The latest released version (1.4.1)
has some minor bugs that are fixed in the CVS archives and will
be released soon as version 1.5.

Once downloaded, the usual ./configure; make; make install will
install the TLS extension on your system.

Once this is done, you can prove that it worked by starting your
Tcl shell and trying to package require the TLS extension:

$> tclsh
% package require tls

1.50
%

The program flow for opening a secure client socket is similar
to opening a standard Tcl client socket. Your script will open an
I/O channel and then evaluate puts, gets, read, and flush com-
mands as necessary. The difference between using a normal
socket and a secure socket is that instead of opening the channel
with the socket command, the channel is opened with the
secure socket (tls::socket) command.

Syntax: tls::socket ?-switch value? host port

-switch value A key-value pair to define how this socket
should behave. There are several options
including:

-requestbool
Request a certificate from peer during SSL
handshake. Default: true

-serverscript
Handshake as a server. The script will be eval-
uated when a client attempts to connect.

-require bool
Require a valid certificate during SSL hand-
shake. Default: false

-password script
A script to invoke when OpenSSL requires a
password. The script should return a plain-
text password to be used, perhaps by query-
ing a user.

-keyfile fileName
A private key file to use.

-cafile fileName
Defines a CA file to use.

by Clif Flynt
Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

37February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

G-certfile fileName
Defines the certificate to use.

host The name or IP address of the host.

port The name or port number of the port to connect to.

Once OpenSSL and the TLS extension are installed, you can
write a Tcl script that will interact with a secure Web site. This
code snippet will send an HTTP GET request to a secure Web
server and retrieve a few lines of the reply.

package require tls
set s [tls::socket -request 0 127.0.0.1 8443]
puts $s "GET / HTTP/1.0\n";
flush $s
set page [read $s]
puts $page

This script generates this output:

HTTP/1.0 200 Data follows
Date: Sun, 07 Dec 2003 02:42:09 GMT
Server: Tcl-Webserver/3.4.2 September 3, 2002
...

SSL supports several authentication modes when establishing a
socket connection. Either or both endpoints can authenticate
each other, or you can suppress authentication entirely. This
example demonstrates the simplest case, establishing a connec-
tion without authentication of either endpoint.

The -request 0 option allows the two ends of the socket to
negotiate an encryption key without requiring authentication.
The connection will be encrypted, and thus be private, but the
identity of the two endpoints is not confirmed.

For simple encrypted conversations without authenticating the
identity of the participants, the SSL handshake only needs to
exchange public keys and confirm that messages can be
encrypted and decrypted. To authenticate a sender’s identity,
the participants need access to a trusted certificate that provides
a digital fingerprint to identify the sender.

Since the agents will be evaluating code that could be malicious,
it’s important to use both the encryption and validation fea-
tures of SSL. (The code could still be malicious, but at least the
agent will be certain of the source.)

In order for the two ends of a conversation to authenticate each
other, they need some way to refer to a trusted third party that
will authenticate their identities. Rather than actively involve
this third party in every transaction, the handshake supports
using signed certificates. This allows the authentication to be
recorded ahead of time. During the SSL handshake, an end-
point can request that a peer transmit its certificate. The signa-
ture on the certificate can then be verified against the public
signature of the third party.

The third party is called a certificate authority (CA). Each end-
point maintains a set of these signatures for use whenever it
requests a certificate from some other endpoint. The signatures
are themselves represented as certificates. Web browsers usually
come supplied with CA certificates from parties such as RSA
Security and Verisign, which the browser will implicitly trust.

Thus, in order to establish a secure connection (one which is
both authenticated and private), SSL needs a certificate and key
to compare with the values sent from the other process. The SSL
protocol requires a CA certificate at the receiving endpoint to
verify the certificate from the sender. The sender obviously
needs to transmit a certificate containing its own public key, but
it also needs its corresponding private key in order to sign the
message itself, so that the receiver can ensure that the message
indeed came from the sender.

For a Web site running SSL, you’ll want a certificate signed by a
well-known and trusted authority, such as Verisign, RSA, or
Microsoft. For this application, where the participants must
install custom software and configuration files, the certificates
can be signed by a local CA. The applications trust the certifi-
cates because they are part of the installation.

You can create the keys and certificates you’ll need from the
openssl command line, or using a GUI like the SimpleCA Tcl
script developed by Joris Ballet (http://users.skynet.be/ballet/
joris/SimpleCA). SimpleCA is a thin front end over openssl that
lets you fill in a form instead of following a challenge-response
script. The interaction with openssl is recorded in a log file for
later examination.

The latest (Rev 28) version of SimpleCA will create a root cer-
tificate for you (if none exists) when you start the application. It
will start by requesting the basic information with forms like
this:

When the forms are complete openssl will be used to generate a
rootca.pem file containing the root CA.

The file can be viewed with the OpenSSL command openssl
x509 -in rootca.pem, or with cat. It will resemble this:

THE TCLSH SPOT ●

Vol. 29, No.1 ;login:38

——-BEGIN CERTIFICATE——-
MIIClDCCAf2gAwIBAgIBADANBgkqhkiG9w0BAQQFADB2MQswCQYDVQQGEwJVUzEc
MBoGA1UEChMTTm91bWVuYSBDb3Jwb3JhdGlvbjEQMA4GA1UECxMHVGVzdGluZzEW
...
——-END CERTIFICATE——-

Once this is complete, you should create client and server certificates using the Certificates/New Certificate Request menu choice. As
with the root certificate, the forms will prompt you for the basic information required to create the certificate and what file to save it
in. On the first screen, select Personal for a client certificate, and SSL Server for the server-side certificate.

The forms for a server certificate will request information about the company requesting the certificate (such as physical address),
while the personal/client certificate only needs a common name and email address.

When this is complete, SimpleCA will have created files named certificates/SITENAME.csr and certificates/SITENAME.key for the
server certificate and certificates/EMAIL.csr and certificates/EMAIL.key for the client certificate (assuming you accept default names
and paths).

The Certificate Request files (*.csr) will resemble this:

——-BEGIN CERTIFICATE REQUEST——-
MIICEDCCAXkCAQAwgZ0xCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhNaWNoaWdhbjEP
MA0GA1UEBxMGRGV4dGVyMRwwGgYDVQQKExNOb3VtZW5hIENvcnBvcmF0aW9uMREw
...
——-END CERTIFICATE REQUEST——-

and the key files will resemble this:

——-BEGIN RSA PRIVATE KEY——-
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,5FBB5CBE38B2C08A

3Jv8/+t74zvyY7qlkUxhb1aKdqpOEebRhg/LbdFrSaPWKQkQ2nITyAmQR6d3QW6p
tffYqBm3d0YiOTFLcgNCjhEGhLRYgpw1MxRKq6VRXTjknB6fJn2Zjai0jVXERU44
...
——-END RSA PRIVATE KEY——-

The next step is signing the certificates, which is handled under the CA/Sign PKCS#10 Certificate Request menu. This will allow you
to select the certificate to sign, display the information about that certificate, request the root authority password, and, finally, sum-
marize what is going to happen with a screen like this:

This sequence of steps will generate files named certificates/SITENAME.crt and
certificates/EMAIL.crt. These are binary datafiles by default, though you can
force them to be generated as ASCII export files by specifying a .pem suffix when
you select the file name.

The main GUI
shows a summary of
the certificates that
have been created:

If you’ve used the defaults (and created binary datafiles), the final step
is to transform the client and server certificates into the flat ASCII export format, using the Tools/Export Certificate menu option.
This will generate files named for their serial number. In this example, the default names will be 1000.pem and 1001.pem.

The important files for creating validated TLS sockets are the rootca.pem, *.key, and SERIAL_NUM.pem files.

39February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

GCreating a client socket with validation is very similar to the
previous example. For a validated connection, however, the
application needs paths for the certificates and keys, needs to
request a certificate from the peer, and must be able to provide
a password.

This example provides all the necessary information, using a
trivial hardcoded procedure to provide the password:

package require tls

proc getPassword {} {
return "testing"

}

set port 2000
set host localhost
set certDir /usr/SimpleCA28/certificates

set s [tls::socket -password getPassword \
-keyfile $certDir/clif@noucorp.com.key \
-certfile $certDir/../1000.pem \
-cafile $certDir/../rootca.pem \
-request true -require true $host $port]

puts $s "this is a message from the client"

The server side of this socket is a bit more complex. Like a basic
TCP server socket, rather than opening a channel to a remote
site and immediately transferring data, the secure server waits
until a client requests a connection to a particular port. When a
client requests a connection, a new port is assigned for the con-
versation and a callback script defined in the tls::socket -server
command is evaluated.

A simple TCP server to report the current time and close the
connection looks like this:

#!/usr/local/bin/tclsh
socket -server openConnection 12345

proc openConnection {channel ip port} {
puts $channel [clock format [clock seconds]]
close $channel

}

A secure server needs to wait until the handshake is complete
(and successful) before processing data messages.

The tls::handshake command forces a handshake and returns
the status of a handshake that’s in process. The tls::handshake
command will read a message if one is available, and returns 0 if
the handshake is still in progress (non-blocking) or 1 if the
handshake was successful. If the handshake failed, this routine
will throw an error.

Syntax: tls::handshake channel

channel The channel being opened.

This would lead to a trivial solution, such as the one used for
the openConnection procedure:

proc openConnection {channel clientaddr clientport } {

Wait until the handshake is complete

set fail [catch {tls::handshake $channel} complete]
while {!$fail && !$complete} {

after 100
set fail [catch {tls::handshake $channel} complete]

}
puts $channel [clock format [clock seconds]]
close $channel

}

This solution has a big problem. It will hang in the openCon-
nection procedure until the handshake is complete and success-
ful. At best, this blocks the server from accepting other
connections until the handshake is complete, and at worst, if
the handshake cannot be successful (e.g., the client closes the
connection), it will hang forever.

A better solution makes use of the Tcl fileevent (described in
the previous Tclsh Spot article) to watch for messages and force
them to be absorbed by tls::handshake until tls::handshake
returns a successful handshake (or until the channel is closed).
This technique supports having several clients connecting at
once.

proc openConnection {channel clientaddr clientport } {
global tlssignal
global msgsignal

Wait until the handshake is complete.

fileevent $channel readable [list handshakeHandler
$channel $clientaddr]

vwait tlssignal($channel)

puts $channel [clock format [clock seconds]]
close $channel

}

proc handshakeHandler {channel clientaddr} {
global tlssignal

Optionally, reject connection based on IP
address–based access control list.

Check for death of client channel.

if {[eof $channel]} {
close $channel
return

}

Absorb message and report status.

set fail [catch {tls::handshake $channel} complete]

if {!$fail && $complete} {
set tlssignal($channel) " "

}
}

THE TCLSH SPOT ●

Vol. 29, No.1 ;login:40

The final step for making a useful agent is to support real data
messages, as well as handshakes. This uses the fileevent com-
mand again — in this case, to grab messages and process them:

proc openConnection {channel clientaddr clientport } {
global tlssignal
global msgsignal

Wait until the handshake is complete.

fileevent $channel readable [list handshakeHandler
$channel $clientaddr]

vwait tlssignal($channel)

Eval processMessage when data is available.

fileevent $channel readable [list processMessage
$channel]

}

For a simple agent test, the processing might be to return the
number of characters sent:

proc processMessage {channel} {
if {[eof $channel]} {

close $channel
return

}
set len [gets $channel message]
puts $channel "Message length is: $len"
flush $channel

}

Real agents, however, execute code rather than evaluating pre-
defined procedures.

Running code from an outside source on my system (even if
I’ve proven that the source is known and trusted) gives me the
heebie-jeebies. Even in code that’s not supposed to be mali-
cious, there’s the potential for a bug.

The Tcl solution for this problem is the interp command, and
the support for creating safe child interpreters.

Syntax: interp create ?-safe? ?interpName?

interp create Create a new slave interpreter

-safe Make this a safe interpreter with no ability to
do damage to your system.

interpName An optional name for this interpreter.

The interp command creates a new child interpreter within a
running Tcl process. In actual terms, this means a new state
structure and hashtables for variables and procedures.

Using a hashtable technique to map the names of commands to
the compiled code that implements them makes it easy to create

a safe interpreter. The interpreter simply leaves commands like
open, exec, and socket out of the hashtable. This makes it
impossible for a script running in a safe interpreter to invoke
those commands.

The next example shows both how a full-featured interpreter
can be created and how to create one without access to the file
system:

Create an interpreter with full access.

set int1 [interp create fullservice]

Load the Tk extension and build a GUI.

$int1 eval "load /usr/local/lib/libtk8.2.so"
$int1 eval "label .l1 -text "OK"; grid .l1"

Create an interpreter that cannot access the file system.

set int2 [interp create -safe limited]

This throws an error.

$int2 eval "load /usr/local/lib/libtk8.2.so"

When a new interpreter is created, Tcl creates a new command
with the same name as the new interpreter. The command
interp create newInterp creates a new interpreter named newIn-
terp and a new command newInterp. As with other Tcl objects,
a script will interact with the interpreter by using the new com-
mand.

As shown in the previous example, you can evaluate a script
within the child interpreter with the interpName eval com-
mand.

This example shows how we can create a new safe interpreter to
evaluate commands received from a remote system. In this
example, Tcl commands could be evaluated.

Create a new safe interpreter.

interp create -safe safeInterp

Receive

proc processMessage {channel} {
if {[eof $channel]} {

close $channel
return

}

set rply [safeInterp eval [gets $channel]]
puts $channel "$rply"
flush $channel

}

If we need to add new procedures to the interpreter, they can be
added within an interpName eval command like this:

41February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

GsafeInterp eval {
proc checksum {string} {

set total 0
foreach c [split $string “”] {

scan $c %c x
incr total $x

}
return $total

}
}

However, to be useful, even a safe interpreter needs to be able to
interact with a file system, or perform some other unsafe inter-
action. The interpreter alias command can be invoked within a
parent interpreter to allow a slave to run certain scripts within
the parent environment (which may be a full-service inter-
preter). This leads to a tightrope act in which we open small
holes in the safe interpreter to perform tightly defined unsafe
actions”

Syntax: interpName alias targetName sourceName

targetName The name by which a procedure will be refer-
enced in the child interpreter.

sourceName The name by which a procedure is referenced
in the parent interpreter.

For example, if we needed to add a logging facility to the check-
sum procedure shown above, it couldn’t be done – that proce-
dure runs in a safe interpreter and can’t open any channels.

However, using the alias command, we can link a logging proce-
dure in the main interpreter to a procedure name in the safe
child interpreter:

Create a safe interpreter.

interp create -safe safeInterp

Link the 'writeLog' procedure in this environment
to the 'log' procedure in the safe child interpreter.

safeInterp alias log writeLog

Define writeLog.

proc writeLog {data} {
set of [open /tmp/agent.log "a"]
puts $of $data
close $of

}

Define a procedure to use the logging facility.

safeInterp eval {
proc checksum {string} {

set total 0
foreach c [split $string " "] {

scan $c %c x
incr total $x

}
log "$total $string"
return $total

}

And that provides all the tools for creating a cryptographically
secure agent system in Tcl. The complete code for the client and
server is just 131 lines and is available at http://www.noucorp.com.

The next Tclsh Spot will show you how to start using these tools
to evaluate a firewall.

THE TCLSH SPOT ●

