
C L I F F L Y N T

the tclsh spot
C R E AT I N G S TA N D - A L O N E
E X E C U TA B L E S W I T H T C L / T K

Clif Flynt is president of Noumena Corp., which
offers training and consulting services for Tcl/Tk
and Internet applications. He is the author of
Tcl/Tk: A Developer’s Guide and the TclTutor
instruction package. He has been programming
computers since 1970 and a Tcl advocate since
1994.

clif@cflynt.com

D Y N A M I C L A N G U A G E S L I K E T C L A R E
great for rapid development. In a few hours
you can churn out applications that would
take days or weeks (or even months) to
develop in compiled languages like C, C++,
or Java.

The downside of developing an application in a high-
level dynamic language is that clients need to have
the appropriate interpreters and libraries installed on
their system before they can run your application.

The solution to this problem is to wrap the applica-
tion and interpreter into a single executable. For Tcl,
there are several choices:

n Tcl-Wrapper (http://sourceforge.net/projects
/tclpro/): The first Tcl wrapper, it was developed by
Scriptics as part of the TclPro development suite.
This is the only wrapping application that stores
the Tcl code as compiled bytecodes, providing
some code obfuscation. This application is now
supported by ActiveState
(http://www.activestate.com) as part of the TclDev
package.

n Wrap (http://www.xs4all.nl/~nijtmans/wrap.html):
Jan Nijtmans created a proof-of-concept wrapping
application to demonstrate how a smaller exe-
cutable could be made using upx and wrap. Jan is
no longer supporting this application, but it
spawned the current StarPack, Freewrap, and
TOBE wrappers.

n FreeWrap (http://freewrap.sourceforge.net/): This
application is written by Dennis LaBelle and is
based on D. Richard Hipp’s mkTclApp. This is
excellent for pure Tcl applications. The command-
line interface is very simple and clean.

n StarPack (http://www.equi4.com/): Developed by
Jean-Claude Wippler and Steve Landers, this is
part of a set of deployment solutions that includes
a single-file Tcl/Tk interpreter, compressed appli-
cations to be run by that single-file interpreter, and
wrapped executables with interpreter, application
code, and data. This package has more features
than FreeWrap. It is very useful for wrapping a
pure Tcl application or one that includes a Tcl-
stubs-enabled library. It uses a more complex
application build sequence, which may take a few
steps to create an application.

n TOBE (http://www.hwaci.com), developed by D.
Richard Hipp, provides the most control and sup-
ports extensions that are not Tcl-stubs-enabled.
Using this package requires compiling a small “C”
code wrapper and linking that to the Tcl libraries.

; LO G I N : F E B R UA RY 2 0 0 5 TH E TC LS H S P OT 53

54 ; L O G I N : V O L . 3 0 , N O . 1

All of these wrapping solutions are built around a zip archive. Part of the zip-file
specification allows a prefix to be placed ahead of the actual archive. The prefix
can even be an executable program, which allows a zip archive to be an applica-
tion. This is how self-extracting zip files are created. The Tcl wrapping programs
all use a modified tclsh or wish interpreter as the prefix.

The problem with just prepending the tclsh interpreter to a zip file is that a use-
ful Tcl interpreter is not just a single executable file. When the Tcl interpreter
starts it loads a number of Tcl files with support for other commands.

In order to make a single executable, these files need to be included with the
archive, and the Tcl interpreter needs to understand how to find the files.

Enter Tcl’s Virtual File System (VFS) API to solve the problem. Just as UNIX
streams generalized the interface between different devices, Tcl’s VFS generalizes
the interface between different directory systems. With a little bit of glue to read
a directory format, any collection of files can be mounted as a directory and the
files can be read. If the collection supports writing, they can also be written.

For example, the VFS API enables a Tcl script to mount an FTP site as a direc-
tory, search the site with the glob and cd commands, and open and read files
with open, gets, and read commands.

For a wrapped application, this means that the Tcl support libraries can be
placed in the zip archive and the Tcl interpreter can be told to look for them
there, instead of looking for them on the hard drive (/usr/local/lib/tcl8.4, for
instance).

The default search path for the Tcl libraries is compiled into the Tcl interpreter.
You can define an alternative path to the libraries with the environment vari-
ables TCL_LIBRARY and TK_LIBRARY.

The basic steps in creating a wrappable Tcl interpreter are:

n Write glue functions to interface between the Tcl VFS and the file collec-
tion format.

n Write a function that will:

1. Mount the file collection.

2. Set TCL_LIBRARY to point to the new directory.

3. Set TK_LIBRARY to point to the new directory.

4. Initialize Tcl and Tk interpreters.

5. Load and evaluate the Tcl application.

n Add code to invoke your Tcl initialization procedure.

Any of the wrappers described above will work for a pure Tcl application. To
wrap a FORTRAN application, however, we need more control. The big problem
is that a FORTRAN application will have a main entry point defined by the
FORTRAN compiler/linker. This will conflict with the main function in a nor-
mal tclsh.

The TOBE paradigm lets us put the code to initialize the Tcl interpreter in a
function that is invoked by the FORTRAN code, rather than in the normal main
function.

When you download TOBE from http://www.hwaci.com/sw/tobe/index.html
you get:

n Sample Makefile for Linux and cross-compiling with mingw.

n zvfs.c, the glue that lets a zip file be accessed like a file system.

n tkwinico.c, a function that provides a custom windows icon.

; LO G I N : F E B R UA RY 2 0 0 5 TH E TC LS H S P OT 55

n main.c, the main function that mounts the zip file and initializes the Tcl
interpreter.

n main.tcl, a sample Tcl application to wrap.

I’ll start with a simple example of using TOBE to wrap a single script, and then
show how to use TOBE to wrap a FORTRAN application.

The first step is to be certain you have Tcl and Tk static libraries available. Many
distributions only include the dynamic libraries, but to make a completely self-
contained executable, we need to link with static libraries.

If you don’t have libtcl*.a on your system, you can build it.

To build Tcl from scratch:

1. Download the Tcl sources from http://sourceforge.net/projects/tcl/.

2. Untar the archives (tar -xvzof tcl8.4.6-src.tar.gz).

3. Change to the UNIX directory (cd tcl8.4.6/unix).

4. Configure the Makefile (./configure -disable-shared).

5. Make the libraries (make).

6. Repeat for tk.

Note that you need to include the -disable-shared option to configure. The
default configure script makes shared libraries, but not static libs.

Also, you don’t need to install the new libraries. We can build TOBE applica-
tions using a different version of Tcl than the default on our system.

The next step to use TOBE for a simple application is to edit the Makefile. The
sample Makefile is created with hard links to Richard Hipp’s home directories,
and is guaranteed not to work for anyone else. However, the Makefile includes
commented-out generic paths as examples of what might exist on your system.

Use your favorite editor to find each of the /drh/ lines in the Makefile and com-
ment them out. Either uncomment a previous generic line or define a path that’s
appropriate to your system.

My preference is to place the TOBE and application directories in the same
directory as the Tcl and Tk source directories, and to use relative paths in this
format:

The linker option used to link against the TCL library
#
LIB_TCL = ../tcl8.4.6/unix/libtcl8.4.a -lm -ldl

The default Makefile has hooks for many Tcl extensions, including BLT, SQLite,
and Img. The executable will be smaller if we don’t include extensions we aren’t
using, so uncomment all of the -DWITHOUT_foo options in the Makefile.

Once this is done, you should be able to type make in the tobe directory, watch
it build zvfs.o, main.o, etc., link these with the Tcl and Tk libraries, tack a little
bit of zip magic onto the end of the file, and build an executable zip file.

Any errors indicate that you don’t have the paths set correctly or are missing a -L
option in a library path definition.

When this is done, you should be able to use unzip -t to examine the contents of
the new file and confirm that it really is a zip file.

The sample main application in main.c is hardcoded to run the Tcl program
main.tcl in the zip archive.

You can add code for a simple Tcl application to src/main.tcl, rerun make, and
create a new tobe that will run that application. For real projects, modify the
Makefile to generate an application with the name you prefer, or just rename the
tobe executable this creates.

56 ; L O G I N : V O L . 3 0 , N O . 1

To use TOBE with the FORTRAN/Tcl library described in the previous couple of
“Tclsh Spot” articles, we need to merge code from the TOBE main.c into
ftcl_start (in ftcl_c.c) to initialize the interpreter from the zip archive, instead of
using the default files located on your system.

The original ftcl_start function took a single argument, the name of the script to
load. The modified version requires two arguments: the name of a script to load
and the name of the executable. (Your FORTRAN program can get this informa-
tion using the f2kcli package from http://www.winteracter.com/f2kcli/index.htm.)

We need to pass the name of the executable to Tcl_FindExecutable after creating
the Tcl interpreter. The Tcl_FindExecutable function finds the full path to the
application and saves it internally for use by a number of the Tcl interpreter’s
housekeeping tasks.

After creating the Tcl interpreter with

ftcl_interp = Tcl_CreateInterp();
Tcl_FindExecutable(executableName);

the code can set a few global variables. For this application, we aren’t accepting
any command-line flags, so the argv and argc global variables are set to empty
and 0, respectively. The argv0 variable holds the name of the application, which
is stored locally in an array named executableName. Finally, the tcl_interactive
variable is set to false to let the Tcl interpreter know that it’s running a script, not
running as an interactive shell.

When tclsh is used as an interactive shell, the Tcl interpreter tries to evaluate
each line as a Tcl command, and if that fails, it tries to evaluate the line as a sys-
tem command. This is proper for an interactive shell, but inappropriate behavior
for most scripts.

Tcl_SetVar(ftcl_interp, "argv", "", TCL_GLOBAL_ONLY);
Tcl_SetVar(ftcl_interp, "argc", "0", TCL_GLOBAL_ONLY);
Tcl_SetVar(ftcl_interp, "argv0", executableName,

TCL_GLOBAL_ONLY);
Tcl_SetVar(ftcl_interp, "tcl_interactive", "0", TCL_GLOBAL_ONLY);

Next, the zip file system is mounted and Tcl’s global environment array is set to
point to the zip file system.

Tcl keeps a copy of the user’s environment in the env array. All of the environ-
ment variables you can set in your shell are stored in this array, with the envi-
ronment variable name used as the array index. For instance, puts $env(PATH)
would print out the path.

In this case, since we need to force the Tcl interpreter to look for the initializa-
tion files in the zip archive, we overwrite the original values for the
TCL_LIBRARY and TK_LIBRARY indices to point to the zip file system.

/* We have to initialize the virtual file system before calling
** Tcl_Init(). Otherwise, Tcl_Init() will not be able to find
** its startup script files.
*/

/* Initialize the zip file system package */
Zvfs_Init(ftcl_interp);

/* Mount the zip archive (this executable) as /zvfs */
retval = Zvfs_Mount(ftcl_interp, Tcl_GetNameOfExecutable(),

"/zvfs");

/* Point env(TCL_LIBRARY) and env(TK_LIBRARY) to the zip direc-
tories */

Tcl_SetVar2(ftcl_interp, "env", "TCL_LIBRARY", "/zvfs/tcl",
TCL_GLOBAL_ONLY);

; LO G I N : F E B R UA RY 2 0 0 5 TH E TC LS H S P OT 57

Tcl_SetVar2(ftcl_interp, "env", "TK_LIBRARY", "/zvfs/tk",
TCL_GLOBAL_ONLY);

Now the code can initialize the Tcl and Tk interpreters with Tcl_Init and Tk_Init:

if(Tcl_Init(ftcl_interp)) {
ftcl_debug_message("ftcl_start - Tcl_Init:",
Tcl_GetVar(ftcl_interp, "errorInfo", TCL_GLOBAL_ONLY)) ;
return 1;

}

if(Tk_Init(ftcl_interp)) {
ftcl_debug_message("ftcl_start - Tk_Init:",
Tcl_GetVar(ftcl_interp, "errorInfo", TCL_GLOBAL_ONLY)) ;
return 1;

}

If your application might need to create new interpreters with extensions
loaded, you must include a call to Tcl_StaticPackage to let the Tcl interpreter
know that a statically linked package has been loaded into the interpreter.

For example, if you need to create child interpreters with Tk loaded, you might
do it with these commands. Note that the load is invoked with an empty string
and a package name, instead of the more common usage of providing a file
name. This format is used when the file is already loaded and the script just
needs to invoke the extension’s initialization function in the new slave inter-
preter.

interp create withwish
withwish eval {load "" tk}
withwish eval {pack [canvas .c]}
withwish eval {.c create text 100 50 -text "child interp"}

If you leave out the Tcl_StaticPackage call, this code would generate an error
message like

package "tk" isn’t loaded statically

By including this line, the Tk package can be loaded into a new slave interpreter.

Tcl_StaticPackage(ftcl_interp,"Tk", Tk_Init, 0);

If your application has other extensions it may need to load into slave inter-
preters, you must include a call to Tcl_StaticPackage for each one.

We need to make a couple of modifications to the FORTRAN and Tcl code to
run inside a TOBE application.

The code we had in lander.f90 called ftcl_start with the single argument
config.tcl. The ftcl_start function then called Tcl_EvalFile to load and evaluate
the config.tcl script in the current directory.

When we package and ship this application, we’ll have a single file, and there
won’t be any config.tcl in the current directory. The config.tcl file will be in the
zip archive, which is mounted as /zvfs.

Changing the original ftcl_start from this original:

CALL ftcl_start('config.tcl')

to this provides the application name and causes the Tcl_EvalFile to try to evalu-
ate the file in the zip archive:

CHARACTER(256) :: exe
CALL get_command_argument(0,exe)
CALL ftcl_start('/zvfs/config.tcl', exe)

Similarly, in the config.tcl script that loads the GUI and starts the Lunar Lander
application running, we originally just sourced files from the current directory
like this:

source options.tcl

58 ; L O G I N : V O L . 3 0 , N O . 1

source setConditions.tcl
source GUI6.tcl

In order to run within a TOBE, we need to source these files from the /zvfs direc-
tory. The simple solution is to just add the /zvfs/ to the paths.

source /zvfs/options.tcl
source /zvfs/setConditions.tcl
source /zvfs/GUI6.tcl

The final steps are to compile the new ftcl_c.c, link the application, and create
the magic TOBE zip archive.

These steps are all in the sample Makefile that comes with TOBE. They can be
combined into a single sequence of commands like this:

lander: lander.f90 ftclz.a
$(FC) -o tobe.zip $(FLAGS) lander.f90 ftclz.a $(LIBS)
rm -rf zipdir
mkdir zipdir
ln -s /usr/local/lib/tcl8.4 zipdir/tcl
ln -s /usr/local/lib/tk8.4 zipdir/tk
cp $(TCL_APPFILES) zipdir
cat ../tobe/src/null.zip >>tobe.zip
cd zipdir; /usr/bin/zip -qr ../tobe.zip *
cd ..
mv tobe.zip lander

And with that, we’ve created a stand-alone Tcl/FORTRAN application that can
be shipped to our client without worrying whether they have the proper Tcl
interpreters installed on their system.

As usual, the complete code described in this article is available at
http://www.noucorp.com.

