
editTableA Generic Display and Edit
Widget for Database Applications

Clif Flynt
Noumena Corporation,

8888 Black Pine Ln,
Whitmore Lake, MI 48189,

http://www.noucorp.com
clif at noucorp dot com

October 24, 2012

Abstract

An application that includes a database always requires a set of pages
to edit the contents of the database.

The bulk of the edit pages are simple and easy to write. Even with
Tk’s ease in constructing simple data-entry pagespages, writing a dozen
procedures takes time that could be spent on the more interesting parts of
a project.

The goal of the EditTables package is to provide a set of good enough
pages with no effort on the part of the programmer, better pages with a bit
of effort, and a framework for building the fully featured pages an end user
will demand.

The implementation uses TclOO for a base class with mixins to provide
customized behavior for particular database engines. The test engines are
sqlite3 and TDBC.

1 Introduction

One application of the 80/20 rule is that 80 percent of an application is the code
that’s boring to write, and 20 percent will be fun. In a database application with
many data entry screens this ratio could push 95-5.

It would be nice if the 95 percent part of a database application could be
generated without requiring 95 percent of the programmer’s time.

It turns out that this can be done.
There is enough information in an SQL schema to create a simple entry

screen. The following schema can be used to generate an adequate GUI:

table create phoneList {
id integer unique,
name text, -- person
phone text, -- phone number
type text -- home, work, mobile

}

The GUI would resemble:

Figure 1: Simple, uninstrumented GUI

By adding some extra information about the fields, the GUI can be im-
proved to resemble the following image:

Figure 2: Simple, instrumented GUI

To paraphrase many lolcats, Simple tables are Simple. In order to be useful,
the EditTables package needed handle one-to-one mapping schemas, such
those containing references to other tables.

table create phoneList {
id integer unique,
name text,
num text,
typeid integer references types

}

Figure 3: Reference, instrumented GUI

The package also needs to handle many-to-one mapping, perhaps a fixed
number of fields as shown below:

table create person {
id integer unique,
name text,
address text,

}
}

table create phone {
id integer unique,
num text,
personid integer references person,
typeid integer references types

}

Figure 4: Reference to table, instrumented GUI

The trick to generating these sorts of GUI’s instead of just a simple GUI
from the pure schema requires adding some layout instructions.

The next requirement is to validate inputs. This may need to be done on
a per-field basis, or when the user submits a page. Both of these options are
supported in this package.

Finally, a useful package needs to work with multiple database back ends.
It would be nice to only support TDBC, but in the real world, TDBC doesn’t
have enough penetration (yet).

There are features in Tcl 8.6 that allow all of the requirements to be met.
The package is written using TclOO. The base package understands Tk and

how an SQL schema is laid out. It provides some primitives that the other
classes can use to find a primary field, find references, etc.

If the project starts using the EditTable package, the layout instructions
can be embedded into the SQL schema and extracted as needed. If EditTable
is being shoe-horned onto an existing database, or if you find the idea of mixing
layout commands and data definitions distasteful, the instrumentation can be
provided by modifying the method that acquires the layout commands in the
Tcl object.

Validation is accomplished by adding flags to fields with some common
validation routines available in the main class, and the capability of adding
custom validation if an application requires it.

Finally, support for multiple database backends is accomplished using TclOO’s
mixin feature.

The current version of editTable is the fourth or fifth iteration of ideas.
It’s being used in a commercial product. It’s also likely to see a number of
modifications before it gets used in another product.

2 Using EditTable package

2.1 Creation

The EditTable package is constructed using the TclOO megawidget design
pattern described by Donal Fellows (Tcl/Tk Proceedings 2009) and in my book
(Tcl/Tk: A Developer’s Guide, Chapter 11). This pattern emulates a
standard Tcl widget, allowing the new editTable object to be created like
any other Tk widget.

Syntax: editTable widgetName mixin dbEngine args

widgetName Name of the widget, normal Tk style
mixin Name of the db engine mixin
dbEngine Name of the db engine to use
args Optional arguments for opening the db engine

Creating an editTable connected to an SQLite database named test.db
would resemble:

set obj [editTable .t1 SQLITE3_support sqlite3 -dbArgs test.db]

Doing the same with a TDBC engine that’s connected to the SQLite database
would resemble:

set obj [editTable .t1 TDBC_support sqlite3 test.db]

Once an editTable object has been created, it can be used to query vari-
ous parameters using the config or configure commands (both map to the
same underlying code.)

Like Tk, the configure command will accept no arguments to return all
configuration options and values, a single argument to report the value of an
option, or a pair of arguments to set a value.

One of the options that can be extracted is the underlying database pointer.
Extracting this allows an application to interact directely with the database ob-
ject opened by editTable. This end-run functionality allows applications to
easily extend the behavior of the editTable class.

The next snippet shows creating an editTable object, extracting the TDBC
database object and using that to create a table in the underlying sqlite3 database.

set obj [editTable .t1 TDBC_support sqlite3 test.db]
set db [$obj config db]
$db allrows {

CREATE TABLE person (
id integer unique primary key,
loginid text, -- loginID
fname text, -- First name
lname text, -- Last name
addrRef integer references addr
);

}

There are several methods defined for the editTable object. The most
commonly used are:

• editObj config

• editObj getSchema

• editObj makeGUI

• editObj populateBySearch

The config command will let the application query or set configuration op-
tions. If it is called with no key, it will return a list of all currently defined keys
and values.

Syntax: editObj config ?key? ?value?

editObj A widget created with editTable command
config Query or set a config option
key Name of the config option or blank
?value? Optional value to define an option

The getSchemamethod will retrieve a schema for a table from the database,
or optional schema retrieval process. The default behavior is to query the
database. This is used internally to build GUIs for tables containing relations.

Syntax: editObj getSchema tableName

editObj A widget created with editTable command
getSchema Return the schema for a table
tableName Name of the table to return Schema for

The makeGUImethod is the workhorse that builds a GUI within the editTable
frame. It can build a GUI for any table defined within the database. The
editTable object can rebuild itself to display a different table as necessary.
The default GUI includes buttons to perform simple searches, and add, delete
or modify a record.

Syntax: editObj makeGUI schema

editObj A widget created with editTable command
makeGUI Construct a GUI within the editTable object frame.
schema a Schema - may be return from getSchema

The populateBySearch method will load values into the fields of a GUI.
The query can be any valid query suitable for an SQL SELECT on the currently
active table.

Syntax: editObj populateBySearch query

editObj A widget created with editTable command
populateBySearch Populates the values in a GUI
query An SQL query

The next example shows initializing a sample database and creating a sim-
ple GUI for a table.

toplevel .tt
set obj [editTable .tt.t1 TDBC_support sqlite3 -dbArgs test2.db]
set db [$obj config db]

$db allrows {
CREATE TABLE person (

id integer unique primary key,

loginid text, -- loginID
fname text, -- First name
lname text, -- Last name
addrRef integer references addr
);
CREATE TABLE addr (
id integer unique primary key,
street text, -- Address
city text, -- Address
state text -- Address

)
}

$db allrows {INSERT INTO addr VALUES (1, ’123 St’, ’Acity’, ’AA’)}
$db allrows {INSERT INTO addr VALUES (2, ’234 St’, ’Bcity’, ’BB’)}
$db allrows {INSERT INTO person VALUES (1, ’aaa’, ’Alpha’, ’Adam’, 1)}
$db allrows {INSERT INTO person VALUES (2, ’bbb’, ’Beta’, ’Blocker’, 2)}
$db allrows {INSERT INTO person VALUES (3, ’aa2’, ’Abel’, ’Adam’, 2)}
$db allrows {INSERT INTO person VALUES (4, ’aa3’, ’Aard’, ’Adam’, 2)}

$obj makeGUI [$obj getSchema person]
$obj config -table person
$obj populateBySearch "loginid = ’aaa’"

pack .tt.t1

The generated GUI resembles this:

Figure 5: default GUI

2.2 Layout Information

Because we are polite and civilized, we will not call the previous example butt-
ugly.

But it is.
An SQL schema is designed to convey the logical date relationships be-

tween fields and tables. It is not designed to convey any information about
aesthetics.

The aesthetic information is conveyed as a six element list attached to each
field that is to be displayed. The elements are shown in the following list. The
first 2 are required, the others have default values that may be adequate.

help A message to display in a popup help balloon
label The label to display with this field
reference If this field references another table, this ele-

ment will contain the table.field name of
the referenced table. If this field contains non-
referential data, this element is blank.

widget arguments arguments for the entry or combobox wid-
get that will be created. These might include
-width or -background arguments.

row column A list of the row and column where this field
is to be displayed.

grid options Arguments to be attached to a grid com-
mand for this field. These might include
-columnspan for example.

This technique for conveying layout info is sub-optimal. The requirements
grew as the complexity of the application grew.

But it works.
The layout information is included in a Schema by adopting a modification

of the standard SQL comment.
An instrumented schema has the layout string appended to a field defini-

tion with a triple-dash comment.
A simple GUI can be created like this:

set obj [editTable .t1 "" "" -table phoneList]

$obj makeGUI {
table create phoneList (
id integer unique,
name text, --- {First Last} {Name} {} {-width 40} {1 1} {-columnspan 2}
num text, --- {Number with area code} {Phone Number} {} {} {2 1}
type text --- {Type of phone} {Type} {} {} {2 2}
);

}

grid .t1

Figure 6: simple GUI with layout info

The editTable widget requires that the SQL schema follow strict rules
and a field which references another table must include a references clause.

The presence or absense of the references clause determines how the
third field - the reference element is to be treated.

If a references clause is present, then the reference element contains
the database field name, or list of field names, to display in each element of a
combobox. The fields to display must be named as tableName.fieldName.

One pattern used with references is for a table to reference one of several
options. The next example is a database in which the book table has a string
for title and a reference for author. The author table has separate fields for first
and last name. The combination of first and last is displayed in the combobox
for selecting an author.

set obj [editTable .book SQLITE3_support sqlite3 -dbArgs test4.db]
set db [$obj config db]

$db eval {
CREATE TABLE book (
id integer unique primary key,
title text, --- {} {Title} {} {-width 40} {1 1} {-columnspan 2}
authorid integer references author

--- {} {Author} {author.first author.last} {} {2 1}
);

CREATE TABLE author (
id integer unique primary key,
first text, --- {First Name} {First} {}
last text --- {Last Name} {Last} {}
);

}

$db eval "INSERT INTO author VALUES (1, ’Clif’, ’Flynt’)"
$db eval "INSERT INTO author VALUES (2, ’Mark’, ’Twain’)"
$db eval "INSERT INTO book VALUES (1,’Tcl/Tk: A Developer’’s Guide’, 1)"

$db eval "INSERT INTO book VALUES (2,’Tom Sawyer’, 2)"
$db eval "INSERT INTO book VALUES (3,’Huckleberry Finn’, 2)"

$obj makeGUI [$obj getSchema book]
$obj config -table book
$obj populateBySearch "title like ’%Tcl%’"
grid .book

The GUI generated from this code looks like this:

Figure 7: Schema with reference and layout info

Another common pattern is the many-to-one mapping implemented by
having a field in one table point back to another table. In a book database,
there are an undefined number of keywords that might be attached to a book.

The schema for this pattern would resemble:

CREATE TABLE book (
id integer unique primary key,
title text,

);
CREATE TABLE keyword (

id integer unique primary key,
key text,
bookid integer references book

);

To generate a GUI for this database pattern, the reference element in the
layout field in the keyword table is used to hold the name of a table. When a
GUI is generated for a table listed in the reference element, an Associated
values section is created in the GUI.

Expanding the previous example to include a reference table, the new table
resembles this

CREATE TABLE keyword (
id integer unique primary key,

key text, --- {Keyword} {Category} {book} {} {}
bookid integer references book --- {book} {Title} {book.title} {} {}

);

Which creates the following GUI:

Figure 8: Schema with reference and layout info

The E button in the previous image opens a new toplevel to edit a keyword
which will be associated with this table row.

2.3 Customization

The editTable widget follows the Tk dictum of being adequate with no
tweaking, and open for customization if the application isn’t suited to the base
GUI.

Various degrees of customization are supported. These techniques include:

• using the layout elements

• configuring options for screen or field validation

• building a separate mix-in or inherited class

• tweaking the GUI before using it

Using layout elements to modify the appearance of the GUI works as de-
scribed.

By default, a editTable GUI has no validation. Per-Field validation can
be enabled by configuring the validate,fieldName attributes for a GUI.
The validation attributes accept a script to evaluate when focus leaves that

field. The widget name (entry or combobox) and field name are appended
to the script when it’s invoked.

The editTable class includes some trivial validation methods including
validatePhone and validateNumeric.

2.4 Extending the class

The current implementation of editTable has mixins for Sqlite3 and TDBC.
A programmer can add a new mixin to support another database engine by
coding the engine-specific methods:

init Initialize a connection to the database.
getSchema Retrieve the schema for a given table. Setting

save sets this to be the active table.)
doSQL Execute an SQL command and return whatever

the command returns. This provides a generic ac-
cess to the underlying database.

getTables Return a list of the tables defined by this database.
getPrimary Retrieve the name of the primary key.
doReplace Update the DB row based on the contents of the

GUI.
doNew Create a new row in the DB based on the contents

of the GUI.
populateBySearch Populate the GUI based on an SQL query.
getValues Return a set of values based on a list of

tableName.fieldName values
getValueByRef Returns a value from table $tbl for field $fld

where the primary is $value
populateWithFwdRef Populate a GUI that includes forward references

based on an SQL query
closeDB Close the connection to the DB

2.4.1 GUI Modification

Since the GUI follows a fixed pattern, it can be modified post-makeGUI and
before display.

For example, if users are only allowed to view and edit fields, the the delete
button can be removed with a command like:

$obj makeGUI $specialSchema noClose
$obj configure -table book

Getting more aggressive, rather than showing the Associated values
for a row, as they are displayed by default, an application can define a fixed
quantity of associated values and a custom display procedure while taking
advantage of the bulk of the editTables widget.

The next example demonstrates a book database that emulates a card cat-
alog via a slider on the side to select books, and a simplified display of key-
words.

It does this by with a special procedure to construct the GUI and a new
procedure to extend the normal editTable population methods. The new
procedure for creating the GUI (bldBookGUI) defines a modified schema with
a couple extra fields to hold the keywords. The showItem procedure uses
the populateBySearch method to populate the fields that are defined in the
book schema, and has extra code to populate the extra fields.

Figure 9: Schema with reference and layout info

toplevel .t3

set obj [editTable .t3.t2 SQLITE3_support sqlite3 -dbArgs test3.db]

proc bldBookGUI {obj} {
set specialSchema {

CREATE TABLE book (
id integer unique primary key,
title text, --- {Title} {Title} {} {-width 40} {1 1} {-columnspan 2}
authorid integer references author, --- {Author} {Author} {author.first author.last} {} {2 1}
keyword1 text --- {Keyword} {Keyword 1} {keyword.key} {} {3 1}
keyword2 text --- {Keyword} {Keyword 2} {keyword.key} {} {3 2}

);
}

$obj makeGUI $specialSchema noClose
$obj configure -table book
destroy $obj.buttons.b_Delete

set prim [$obj getPrimary book]
set count [$obj doSQL "SELECT count($prim) FROM book"]

set scale [scale .t3.sc -from 0 -to $count \
-command [list showItem $obj $specialSchema .t3.sc]]

grid $obj $scale
}

proc showItem {obj schema scale num} {
$obj populateBySearch "id=$num"

set pos 0
foreach l [split $schema \n] {

lassign [$obj splitSchemaLine $l] def layout
lassign $layout help label ref args rowcol gridO
if {($ref ne "") && ([string first "references" $l] < 0)} {

set dfld [lindex $l 0]
lassign [split $ref .] tbl fld
set lst [$obj doSQL "SELECT $fld FROM $tbl WHERE bookid=$num"]
set item [lindex $lst $pos]
incr pos
$obj configure -value,$dfld $item

}

}
}
bldBookGUI $obj

3 Implementation

The editTable widget is implemented as a TclOO Megawidget with mixins
to provide database engine customization.

Another standard pattern would have been to make each database engine a
class that inherited the base functions from editTable. I considered and dis-
carded this pattern in order to have a single widget class (editTable) rather
than multiple classes (editSQLite, editTDBC, etc.).

The editTable class uses the technique for creating a megawidget de-
scribed by Donal Fellows in his 2009 paper, and also described in my book
(Tcl/Tk: A Developer’s Guide, Chapter 11) (Shameless plug).

This technique uses a classmethod call to create an unknownmethod that
checks to see if the first argument is a window name, and if so proceeds to
create the new widget.

Create a class method
Avoid redefining classmethod if it already exists.
if {[info proc ::oo::define::classmethod] eq ""} {
proc ::oo::define::classmethod {name {args ""} {body ""}} {

Create the method on the class if the caller gave
arguments and body
if {[llength [info level 0]] == 4} {

uplevel 1 [list self method $name $args $body]
}
Get the name of the class being defined
set cls [lindex [info level -1] 1]
Make connection to private class "my" command by
forwarding
uplevel forward $name [info object namespace $cls]::my $name

}
}

oo::class create editTable {
classmethod unknown {w args} {

puts "UNKL: $w -- $args"
if {[string match .* $w]} {
[self] new $w {*}$args
return $w

}
next $w {*}$args

}
...
}

When a new instance is created, one of the arguments describes the mixin
to be added. Since mixins don’t have constructors, the editTable constructor
calls a initmethod defined within the mixin to perform special initializations.

The editTable class can create objects that have lives of their own. These
includes GUI widgets, open database connections and may include slaved
editTable GUIs. Because of these additional elements to the editTable
class, the editTable class requires a destructor.

Each editTable object contains a list of cloned and referenced objects. The
desstructor descends upon these like a wolf upon the fold destroying them
in gay abandon.

While the editTable class is happy to have multiple channels to databases,
many database engines are less happy with this. The init method in the mix-
ins avoids opening multiple channels. The editTable class must also avoid
closing a database channel until all users have been destroyed.

A class variable is used to keep track of the number of open database con-
nections. Again, this code was stolen from Donal Fellows’ 2009 talk and my
book.

if {[info proc ::oo::Helpers::classvar] eq ""} {
proc ::oo::Helpers::classvar {args} {

Get reference to classs namespace
set ns [info object namespace [uplevel 1 {self class}]]
Double up the list of varnames
foreach v $args {

uplevel 1 namespace upvar $ns $v $v
}

}
}

4 Future

The method of conveying the layout information, and what information is re-
quired has been evolutionary. It is subject to a rework before the this package
gets used in another application.

The schema parsing is a quick and dirty approach that assumes each field
definition is contained on a single line. The schema parsing will be enhanced
as a method of the base editTable class.

It may be possible to reduce the number of methods in the mixin classes
by better use of the basic methods in the editTables class.

5 Summary

The current status of the editTable class is functional. It’s in use in a
commercial product and is scheduled for a several other in-house and out-
house projects.

What started as a simple way to generate a good enough GUI that reflected
the underlying database schema has expanded into a package that can generate
a commercial-grade GUI with capability of hiding the schema and providing a
simple interface to a user.

The underlying simple display has been retained with potential tweaks to
extend the behavior beyond simple.

As the class is force-fed to other applications I expect to discover more
things it should do, and streamline the current feature set.

The current escape is available at http://www.noucorp.com.

