
TclTutor

Clif Flynt

Noumena Corporation
9300 Fleming Rd
Dexter, MI 48130

Abstract

TclTutor is a Computer Aided Instruction application for learning the Tcl programming
language.

This paper discusses the application's development and some of the technical details,
along with lesson's learned and potential future work.

Introduction

TclTutor is a Computer Aided Instruction application for learning the Tcl programming
language. The application is written in Tcl using only the Tk extension. It runs on any
platform that supports Tk.

Since its introduction in 1995, it has gone through 3 major revisions and several minor
bug fix or feature releases. It's been downloaded hundreds of thousands of times. The
lessons have been translated into Portuguese and extracted as the basis for the
www.tcl.tk online tutorial. It directly led to my getting a contract to write a book about
Tcl/Tk and was instrumental in my being hired to teach at Grinnell College.

It's undoubtably the most successful application I've written in 30+ years as a
professional computer programmer. It has several good features that were included by
accident and some warts that nobody can miss.

History

The 1995 the Tcl Conference included a panel to discuss using Tcl and Tk for college
level coursework. Two of the participants, Charles Crowley and Joseph Konstan
commented that they needed a fast method to get students up to speed with Tcl and
Tk in order to use Tk as a vehicle for teaching aspects of computer science.
[Crowley95] Their comment inspired me to create the TclTutor package, as a solution to
this problem.

I took a few notes on the back of the program and started coding as soon as I got
home, much to my wife's dismay. The base engine was written in a few hours, the
lessons, over several weeks.

The first released version of TclTutor looked like this:

Default Title file:///clif/BOOKS/Tcl2007/paper.html

1 of 9 09/12/2014 09:26 PM



When Tk was ported to the Microsoft Windows operating system, I ported TclTutor. This
involved a fair amount of rework, since the original version TclTutor used exec command
frequently. Code like exec ls was replaced with glob, while the exec grep constructs were
replaced with Tcl procedures to examine files. The file command was introduced when
Tcl was ported to Windows, and all the hardcoded paths needed to be replaced with
[file join ...] constructs.

These were all mechanical changes, but they introduced me to a lot if programming
styles that I'd been able to comfortably ignore until then.

The TclTutor engine stayed fairly constant for a few years while I reworked installation
kits that used InstallShield (with limited success). When application wrappers became
available, I made TclTutor friendly with Jan Nijtman's original wrap program, then
Freewrap, the TclPro wrapper, and finally, in 2002, TclTutor got ported to use a StarPack.

The biggest advantage of using the application wrappers was that this reduced the
amount of email I recieved asking why TclTutor would not work and if they needed to
install Tcl first.

The first major rework of the GUI came in 2000, when the grid rowconfigure command
made it possible to easily make windows that were dynamicly resized under script

Default Title file:///clif/BOOKS/Tcl2007/paper.html

2 of 9 09/12/2014 09:26 PM



control. I wrote a paned window controller for TclTutor that would let users resize
windows.

At that point, TclTutor looked like this:

The dark blue diamonds are the resizing controls. Not elegant, but it worked.

For the past 5 years, TclTutor has existed with this GUI. Finally, TclTutor is moving into
the 21'st century with real paned windows, and the battleship grey coloring.

Default Title file:///clif/BOOKS/Tcl2007/paper.html

3 of 9 09/12/2014 09:26 PM



Design

The design and implementation of TclTutor has paralleled the evolution of our concepts
of how Tcl can be used.

Originally, John Ousterhout conceived Tcl as an adjunct to an application written in a
compiled language like "C". Later users saw Tcl as a better shell scripting tool that uses
the exec command to invoke other applications to perform the actual work. Tcl is now
perceived as an extensible interpreter and the common pattern is to write a complete
application in Tcl, with small sections written in a compiled language.

The initial version of TclTutor followed the paradigm that Tcl was a better Bourne Shell
with a nifty GUI tool. It was written in a single file and most of the code ran in the
global scope. It made frequent use of the exec command to perform operations that
were too slow or cumbersome for the 7.3 release of Tcl.

The single file version of TclTutor lasted until Steve Uhler [Uhler95] released hmtllib.tcl
pure Tcl HTML rendering package. TclTutor was an early adopter of this package.

The early versions of TclTutor kept the application and all the related course and lesson
files in a single directory. Later versions of TclTutor supported a separate lesson
directory where all lesson files could be kept. The latest TclTutor is finally moving to a
directory tree for the courses with each course in a separate subdirectory.

While new lessons have been added and the GUI has been updated, the basics of
TclTutor haven't changed since the first version.

The two critical parts of TclTutor are:

Default Title file:///clif/BOOKS/Tcl2007/paper.html

4 of 9 09/12/2014 09:26 PM



Multiple verbosity levels.

The holy grail of Computer Aided Instruction has been to duplicate the way a good
teacher will rephrase information to match the needs of the student.

The three verbosity levels in TclTutor provide a simple way to give the beginners
more information without boring the experienced users.

3 Windows - text, example and output.

Another attribute of good CAI is to provide the student with immediate interaction
and feedback.

Tcl provides all the hooks to make an interactive window where the user can view
the example, run it, see the results, edit and try again.

The lesson and course menus are generated at runtime. The application examines a
given directory and builds the menus based on simple naming conventions. Each
lesson will include a file with a .cfg suffix which contains some language specific
settings and special procedures for operations like parsing error output. The lessons
are named by the topic name, followed by a number, then a .lsn suffix.

The .cfg file allows TclTutor to be easily configured for teaching other material. Each
course includes a course config file which defines the procedures that are used to run
examples and report errors. Once the config file is constructed, the lesson files all
follow the same format.

One advantage of this design is that once a course configuration file has been created,
non-programmers can develop lessons. The primary released version of TclTutor have
been for Tcl lessons, I've developed lessons for extension like Spirent/AdTech AxTcl. I've
also created proof-of-concept lessons for perl, java and scheme as well variations like
multiple choice tests. The Tk lesson set has been in development for several years,
with varying amounts of attention.

Tcl/Tk as a platform for developing CAI applications.

The fact that TclTutor is written in Tcl provides an existence proof that Tcl/Tk is an
adequate language for writing a CAI application. In fact, TclTutor barely scratches the
surface of what can be done in this arena.

A good CAI development environment should:

Encourage the programmer to focus on CAI Development Tasks.
The programming language should contain the constructs necessary for the task.
If the language has inadequate tools, or imposes an inappropriate presentation
paradigm, the programmers will spend more time dealing with the programming
environment than creating the CAI program.[Bork87.1]

Support rapid prototyping.
One of the most expensive phases of constructing a CAI program is the design-
program-test-redesign phase. The programming environment should support
mechanisms which shorten this phase.[Bork87.1]

Default Title file:///clif/BOOKS/Tcl2007/paper.html

5 of 9 09/12/2014 09:26 PM



Support easy modification of lesson units.
Teachers may request improvements after using the package with students.
Changes in education theory and practice may mandate new material. The
capability to easily modify lessons allows a package to remain current and useful.
[Bork87.1] This implies separating the lesson materials from the presentation
engine.

Support interaction and feedback.
Studies have found that immediate feedback increases learning. [Bork85]
[Bork87.2][Owens92] The programming language should include constructs which
support feedback mechanisms.

Support multimedia and hypertext.
Studies have found that different presentation methods (video, sound) improve
student comprehension and retention. [Fox96] The programming language should
include constructs for multimedia and hypertext. [Owens92] [Barron95]

Be portable.
Hardware and software platforms may differ from school to school, or even within
a single school. A good CAI package must accommodate varying environments.
[Bork87.1]

Be available at a reasonable cost.
Educational institutions, expecially those below the college level have limited
budgets. [Bork87.1]

Tcl/Tk meets all of these requirements quite handily.

Technical Details

The TclTutor lesson engine is a relatively simple wish program containing a menu, task
bar and 3 text windows.

The main features of TclTutor (three text windows and 3 levels of verbosity) have
remained constant through 12 years of use and tweaking. The implementation of these
features has evolved as the concept of how one should use a scripting language has
evolved.

The largest code change was reworking the engine to support multiple platforms. This
caused my paradigm for Tcl to shift from Tcl being a better shell language to Tcl being a
high-level interpreted language.

The first version of TclTutor was composed primarily of global scope code with only a
few procedures. As TclTutor got reworked, the coding style moved from the script-style
global scope code to a more structured style in which most of the code is in procedures
and only a small amount of setup code is in global scope.

The most visible changes to TclTutor have been to the GUI. These reflect the evolution
from the early X Windows/Motif philosophy of using interesting colors to the modern
boring gray approach, and the evolution of the Tk Toolkit to support the new GUI
standards.

The early versions of TclTutor tried to economize on desktop space by using a single

Default Title file:///clif/BOOKS/Tcl2007/paper.html

6 of 9 09/12/2014 09:26 PM



control bar that mixed menubuttons and normal buttons. By default the normal buttons
and menubuttons were displayed with a different appearance, but the configuration
options provided plenty of power for making these look identical enough to confuse
any users.

An unreleased version of TclTutor looked like this:

This follows the modern practice of having a menu at the top, and a taskbar for
buttons.

The taskbuttons allow students to step through the lessons and run examples. The
most common applications a user does.

The menus allow a student to change courses, select a specific lesson, change
verbosity levels or set various options like colors and font sizes.

Separate menu lines and taskbars make a lot of sense for applications like Open Office
or Firebird where there are too many elements to fit on a single line. It looks silly to
have a mostly empty menu line and then an even emptier taskbutton line.

Given the simplicity of the user interaction with TclTutor, I decided to stick with the
single row of menu buttons and task buttons. To make it a bit easier to distinguish
between these buttons, the menubuttons are flat relief with textual labels, while the
taskbuttons are raised relief iconic labels.

The construction of the course and lesson selection menus is done on the fly. The first
(unreleased) versions of TclTutor had hardcoded lists of files containing lessons, which
required modifying the main application whenever a new lesson was created. This got

Default Title file:///clif/BOOKS/Tcl2007/paper.html

7 of 9 09/12/2014 09:26 PM



old fast.

The lesson files are formatted as several sections with identifying strings to mark the
start and end of a section. This

The next version of TclTutor used grep to find a keyword in the lesson files and built the
menu on the fly. This worked until Tk (and TclTutor) was ported to Windows 95. Since
then, there have been variation on the theme of reading in a lesson file, finding the
keyword, and building the menus at run time.

The paradigm of data-driven, rather than code-driven GUIs is easy and commonin
Tcl/Tk programs, but much less easy and much less common with GUI tools designed to
work with compiled languages.

Things done Right and Wrong

Right

There are two design features that make using TclTutor significantly better than reading
a book or using a pure HTML tutorial. These are the multiple levels of explanation and
the ability to run, modify and rerun the examples.

The multiple levels of terseness allows an experienced programmer to view just syntax
and example, while a less experienced programmer can get enough explanation to
(hopefully) understand what the command does and why they might want to use it.

The ability to run, modify and rerun the examples is key to a learning experience.
People learn better if they can apply information immediately after they acquire it.

The best implmentation decision I made was to create the course and lesson menus on
the fly. This saved countless hours and innumerable bugs during phases lessons were
in rapid development and frequent change.

Wrong

The biggest mistake I made was writing my own license for TclTutor. At that time the
three models for releasing software were the original GPL, BSD or Shareware. I wanted
TclTutor to be free to individuals, but not to allow anyone to sell copies.

I was afraid that someone would use my code and make money from it without giving
me a share. In retrospect, this was unlikely. The TclTutor engine is relatively small and
could easily be retro-engineered if anyone cared to.

The effect of my license was that as the Open Source movement started to become
more aware of licenses, TclTutor was taken off Linux and BSD distributions that sold a
distribution on a DVD/CD-Rom. Since most distributions are available on physical media
for a small fee, this cut into the distribution of TclTutor just as Tcl was otherwise
becoming more accepted.

The BSD license is better for small projects. The best kind of advertising a software
engineer can get is to have developed an accepted product. The Open Source
community is a great way to prove that you've "got the chops".

Default Title file:///clif/BOOKS/Tcl2007/paper.html

8 of 9 09/12/2014 09:26 PM



Another error was that rather than put TclTutor on a major website, I put it on my
private site. The advantage of this was that I had direct access to the web logs and
could count the number of downloads, see when it peaked, etc. The disadvantage is
that not everyone in the world looks at my website to see what's new.

The worst implementation mistake was to use a keyword driven format for the lesson
files. This is a classic example of writing a "C" application in Tcl. I could have saved
myself a dozen or so lines of code and made the application more easily extended if I'd
used a lesson format that looked like a Tcl script and loaded the lessons with the source
command.

Future Work

There are always more lessons to be written. The Tk course has been in process for
almost a dozen years. There are hundreds of packages that would profit by a TclTutor
lesson or two.

The Release 3 version of TclTutor will use the BSD license, and will be available as a
Starkit. I plan on making the application available on some website with wider
distribution than www.msen.com/~clif.

And, there is always room for an improved GUI.

Default Title file:///clif/BOOKS/Tcl2007/paper.html

9 of 9 09/12/2014 09:26 PM


