
Characterizing and Back-Porting
Performance Improvement

Clif Flynt
Noumena Corporation
clif@noucorp.com

Phil Brooks
Mentor Graphics Corporation
phil brooks@mentor.com

Don Porter
NIST

donald.porter@nist.gov

September 4, 2013

Abstract

The Tcl interpreter is constantly being modified and improved. Im-
provements include new features and performance boosts.

Everyone wants to use the latest releases with the newest improve-
ments, but corporate users with large code bases may not be able to do this.
Reworking an extremely large code base can take longer than the interval
between Tcl releases. These users may need a change to be back-ported to
the version of Tcl that they are using.

A Tcl release includes many changes and identifying the modification
that caused a particular performance boost isn’t always simple, particu-
larly if the performance boost of interest was a side-effect of other improve-
ments.

This paper describes the discovery of a thread-performance issue in Tcl
8.4 which was fixed in 8.5, a semi-automated technique for tracking down
the code modification that improved the performance, and a discussion
back-porting the improvement.

1 Introduction

The first rule for carpenters and seamstresses is ”Measure twice, cut once”. For
software engineers the rule for optimization is just ”Measure First”.

Work reported at the Tcl Conference in 2005 and 2012 identified an area
where Tcl performance was not living up to expectations and provided the crit-
ical benchmark to measure the interpreter performance behavior with multiple
threads.

1.1 Tcl-2005: ’Pulling Out All the Stops’

Phil Brook’s 2005 Tcl conference paper discussed implementation of Calibre
LVS’s Device TVF feature, in which a highly efficient, though quite limited,
calculation engine is given the ability to make calls to a Tcl program allowing
for more sophisticated programming capabilities.

1.2 Tcl-2012: ’Pulling Out All the Stops - Part II’

The follow up 2012 paper discussed implementation of threading capabilities
on the 2005 calculation engine and identified a bottleneck that is present es-
pecially when the calculation engine is creating many strings and formatting
numbers into strings. The behavior in the application was reproduced in a
stand alone C++/Tcl test program that similarly created many strings from
numbers. The application behavior and that of the stand alone benchmark
bore telltale signs of a locking problem:

• Real time execution scaling tapers off and even gets worse with addi-
tional threads.

• System time required escalates with the number of threads as additional
kernel intervention is required to resolve lock contention.

The following graph compares MT scaling across Tcl versions 8.4.19, and
8.5.14:

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

8.4.19

8.5.14

8.6.0

Tcl MT String Formatting Benchmark

Figure 1: Application run time vs threads for Tcl 8.4, 8.5 and 8.6

When the stand alone test program was run against Tcl 8.5 and Tcl 8.6, the
contention issue was not observed. That led to the question: What changed
in Tcl that improved multi threading execution time? One other observation
between Tcl versions 8.4, 8.5 and 8.6 was that the simple use of expr in a for
loop was significantly slower in Tcl 8.5 and again slower in Tcl 8.6. This fact,
along with the difficulty of porting a major application with over 1 million lines
of Tcl code onto Tcl 8.5 or 8.6 led us to investigate finding the optimization and
looking at the possibility of porting it back to Tcl 8.4.

2 Procedure

The benchmark program developed by Phil Brooks was used to characterize
several Tcl check-ins. This benchmark performs a number of float-to-string
conversions and allows the user to select the number of threads to use to per-
form the conversions.

The basic flow for performing the benchmarks was

For revision in List_Of_Fossil_Identifiers
Checkout revision
Build Tcl libraries
Link benchmark with new libraries

Run benchmark and record results

The fossil finfo command will return a list of check-ins in which a file
has been modified. Since we were investigating threading behavior, it made
sense to collect a set of fossil check-ins related to changes in the generic/tclThreadAlloc.c
module with this command.

> mkdir tcl
> cd tcl
> fossil open ../tcl.fos
> fossil finfo generic/tclThreadAlloc.c >../ThreadFiles.fo

The output of the fossil finfo command resembles this:

2012-11-26 [1d357d342e] Merge (selected bits of) novem (user: dgp, artifact:
[2314c6d7b8])

2012-11-26 [45a2eb8ff0] merge 8.5 (user: dgp, artifact: [58f949bc42])
2012-11-26 [ab9713b5f1] merge novem (user: dkf, artifact: [1b8015a219])
2012-11-26 [cdc837ae05] merge trunk (user: mig, artifact: [59ce13b7e5])
2012-11-26 [6b2cf92413] Removed functions marked deprecated or obsolete for a

long time: Tcl_Backslash, Tcl_EvalFile, Tcl_GlobalEvalObj,
Tcl_GlobalEval, Tcl_EvalTokens. Remove Tcl_FindExecutable from
...

The useful lines are the ones that start with a date stamp. The numbers
inside square braces are the identifier for this check-in. This set of numbers
can be used with fossil checkout to check out a specific version of the Tcl
source code.

This set of code examines the finfo output and checks out Tcl revisions in
the order that they were checked into fossil.

set top $pwd
foreach l [split $d \n] {
cd $top

extract first 10 characters
set dt [string range $l 0 10]

Sudden death tests - if not date, or no values, skip
if {[catch {clock scan $dt}]} {continue}
if {[string trim $dt] eq ""} {continue}

If the line starts with a date, get the ID number
set num [string range $l 12 21]

Clean up a folder for new checkout
catch {exec rm -rf tcl}
file mkdir tcl
cd tcl

Checkout
exec fossil open ../tcl.fos
exec fossil checkout $num

Tcl development is a continuous process on all of the active releases and
branches. The chronology of check-ins does not reflect the release or position
within a release.

This code snippet opens the tcl.h file in the newly checked out sources to
find the version number associated with this code.

cd tcl
set if [open generic/tcl.h r]
set tclh [read $if]
close $if

regexp {TCL_VERSION[ˆ"]*"([ˆ"]+)} $tclh all rev

Once the code is extracted, it needs to be compiled. This is trivial with the
TEA based make system and is easily automated.

While Tcl releases are very stable, not every check-in is guaranteed to work,
or even compile, so the make is executed within a catch command.

cd unix
exec ./configure --enable-threads -enable-shared=0
set fail [catch {exec make} rtn]

The fail value is used to determine whether or not to build the bench-
mark. An application is not guaranteed to be linkable after the components
have been successfully compiled, and an application that links doens’t neces-
sarily run. The catch command gets a lot of use in the sections of the script
that make and run the benchmark.

cd $benchFolder

Modify Makefile for current release
exec sed s/REL/$id/g <Makefile.in >Makefile

Clean and rebuild benchmark
catch {exec make clean}
set fail [catch {exec make}]

for {set ii 0} {$ii < $runCount} {incr ii} {
set t1 [clock seconds]
set fail [catch {exec ./mt_example_$id -tcl -s $count1} rtn]
regexp {.*REAL TIME=([ˆ]+) .*} $rtn aa measure

Calculate average
}

The Tcl time command was used to evaluate the run time for the bench-
mark. To protect from system inconsistencies, the benchmark was run multi-
ple times and the average time was used to calculate the ratio between 2 and 6
threads.

The process of checkout, compile and test is time consuming, but will com-
plete in a single night. Once the results were collected, they were graphed as
shown below, demonstrating the dramatic performance improvement.

Figure 2: Runtime Ratio vs Tcl Release

The graph is nice for visualization, but does not show where the change
occurred.

The raw data, however makes it fairly obvious:

...
3af2919289 8.5 RATIO 2.0
7ff2693241 8.5 RATIO 2.0
1cc2336920 8.5 RATIO 2.0
751ccc1989 8.5 RATIO 0.7
edf99c3880 8.5 RATIO 0.8
83aa957ebe 8.5 RATIO 0.8
...

In an ideal world, using 6 threads instead of using 2 threads would be result
in a runtime reduced by a third, and the ratio would be 3. In the real world
there are issues involved with making sure the threads don’t collide, switching
overhead, etc. The best improvement seen in this set of testing was a bit over
2.

However it’s obvious that between the 751ccc1989 check-in and the 1cc2336920
the performance was improved. Examining the code changes, it turned out
that the improved thread performance did not come from an improvement in
the thread management code, but was a benefit from the merge of a large nu-
merics reform branch.

2.1 Back-port

At this point, the search could easily continue by iterating the automated per-
formance testing script on the merged numerics reform branch to find the pre-
cise change responsible. However, having narrowed the matter down to the
changes in number handling was sufficient. For someone familiar with the
structure and history of that portion of the Tcl source code, it is clear that the
problem lies with the treatment of the ::tcl precision variable, and the
improvement came with a strong move away from using that variable. Search-
ing tools are a great assistant, but knowing the code-base is a key contributor
as well.

The ::tcl precision variable has a long history in Tcl. It arrived in Tcl
7.0. Setting the variable to an integer value between 1 and 17 specified how
many decimal digits of precision should be used when the routine Tcl PrintDouble
generates the string form of a floating point value. It had some value as a
means to tune performance, with sprintf() presumably taking less time to
generate shorter strings (and in the days when every value truly was a string,
that could matter). However, its greater purpose is to shield unsophisticated
Tcl programmers from some of the harsher realities of floating point arithmetic.

% expr {1.0/10}
0.10000000000000001

The aim is not unreasonable, but the error was in placing this feature in
the heart of the value stream of Tcl, and not on the periphery where it would
govern display matters only. The consequence over time was a large number of
bug reports rooted in the fact that the operation of ::tcl precision was at
odds with Tcl’s value model that “Everything Is A String” (EIAS). An extreme
example serves to demonstrate.

% set tcl_precision 1
1
% set third [expr {1.0/3}]
0.3
% set compare "0.3"
0.3
% string equal $third $compare
1
% expr {$third == $compare}
0

Two equal string values get treated as unequal by some Tcl commands. This
is contrary to Tcl’s value model that the string representation holds all the value
there is to hold.

In the development of Tcl 8.5, one of the goals set and achieved was to
make numeric values in Tcl properly conform to EIAS. Strictly speaking this
is impossible to fully achieve while the ::tcl precision variable still exists
and Tcl continues to follow the documented response to its value for sake of
compatibility with existing scripts making use of it. (The example above uses
a Tcl 8.6.0 interpreter.) However, the continued use of ::tcl precision is
discouraged in the strongest terms, and the default setting is one that upholds
EIAS and also avoids most of the shocking results that motivated its preserva-
tion through many earlier calls for its elimination.

% set tcl_precision
0
% expr {1.0/10}
0.1

Starting in Tcl 8, Tcl values are stored in a Tcl Obj struct, and the Tcl PrintDouble
routine is normally only called for producing the string representation of a
value of the double Tcl ObjType. In this context, there is no Tcl Interp to re-
fer to, and so no way to pull a value out of any particular ::tcl precision
variable. Consequently, in the Tcl 7 to Tcl 8 transition, the actual value control-
ling precision came to be stored outside of any interp, as one common static
variable shared by the entire application. All the ::tcl precision variables
in all the interps became ways to read and write that common global value
through the magic of traces.

Then in Tcl 8.1, as the source code was revised to support multi-threaded
operations, the common static variable holding an application wide value for
controlling precision came to be shared among all threads, with mutex locking
added to guarantee that all writes and reads of that value are serialized.

At this point the reader seasoned in multi-threaded programming is think-
ing “Aha! Of course multi-threaded performance collapses when every thread
has significant amounts of double to string conversions to do!” The whole
double to string machinery funnels through a serialization bottleneck. Relief
came only in the development of Tcl 8.5, when two things happened. First, the
entire subsystem for generating the decimal string representation of a floating
point value was rewritten, changing the patterns of locking in a way that re-
duced the scaling problem. Second, an additional design change replaced the
application-wide global value for controlling precision with a set of values, one
for each thread. This eliminated any need for locking altogether.

Having identified the cause of the performance bottleneck, and the reasons
that Tcl 8.5 and later avoid it, the next issue is what can be done in Tcl 8.4 to
correct the problem. The solution came into 8.5 as part of a major subsystem
rewrite. Forcing that into a patch release of Tcl 8.4 is contrary to the practice of
making such major rewrites only with new minor versions. A simpler solution
would be to back-port the shift from a single global value to a set of preci-

sion control values, one for each thread. However, this solution was avoided
because it represents a level of compatibility change that exceeds the normal
practice for patch level releases. The amount of incompatibility involved is just
too great for those scripts that would notice.

Instead, a new solution was crafted, preserving the global precision control
value, and improving performance by replacing the expensive simple-minded
serialization scheme with a somewhat more complex scheme, but one far better
matched to the actual needs and resulting in far better performance. In prac-
tice, the reads from the global precision control value are far more frequent than
writes. A locking scheme that reduces the need for locking when only read-
ing the value is highly effective in improving performance. The machinery to
make this happen is an adapted back-port of the ProcessGlobalValue util-
ity already used in Tcl 8.5 to manage other application-wide values like [info
hostname] and [info nameofexecutable].

A ProcessGlobalValue maintains a master string value, and also keeps
a cached copy of that value in a Tcl Obj for each thread. A master integer epoch
value is also maintained, and a cached value of that epoch in each thread as
well. When the master value is written, full mutex locks are used to serialize
writes. The new master value is stored, and the master epoch is incremented.
When there is a need to read the value, however, a scheme of epoch check-
ing avoids the need for locks most of the time. The cached epoch value is
compared with the master epoch value and so long as they are the same, the
cached Tcl Obj value is still valid, and the thread proceeds making use of it.
Only when an epoch mismatch indicates that the master string value has been
written since the last epoch check in a thread does the expense of a lock and
a recopy from the master value to the thread cache take place, along with an
update of the thread epoch value. This mechanism preserves the single global
value that is a feature of Tcl 8.4, while bringing the cost of it down significantly.
The patch to make this change was added, tested, and released as part of Tcl
8.4.20.

The change was incorporated into the original Calibre application and the
resulting application performance clearly shows an improvement in scaling
and continues to scale incrementally even with 32 threads running on a 32 way
system as shown in the following graph:

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

R
EA

L
Ti

m
e

 (
Se

co
n

d
s)

Concurrent Threads

Calibre Device Application Threaded Performance

Before

After

Figure 3: Application run time vs threads

2.2 Conclusion

Keeping Tcl users happy and improving the performance of the kernel is al-
ways good. What is interesting in this particular case is the techniques used to
identify the time when a performance change occurred using a scripted set of
checkouts and builds, and the cooperation of three entities (the three authors)
in identifying the problem, reducing the problem set, and fixing the issue.

The technique of using a set of scripts to checkout, configure, build, test
is fairly obvious and is applicable to any performance study. The scripts that
checked out versions of the Tcl interpreter and built multiple copies are rela-
tively simple.

2.3 Future Work

The scripts used to run this set of benchmarks have been modified and ex-
tended in a larger study of the behavior of Tcl with the tclbench suite to
characterize Tcl behavior over a larger number of subsystems.

